Crystalline hydrogenation of graphene by STM tip-induced field dissociation of H$_2$


الملخص بالإنكليزية

We have developed a novel method for crystalline hydrogenation of graphene on the nanoscale. Molecular hydrogen was physisorbed at 5 K onto pristine graphene islands grown on Cu(111) in ultrahigh vacuum. Field emission local to the tip of a scanning tunneling microscope dissociates H$_2$ and results in hydrogenated graphene. At lower coverage, isolated point defects are found on the graphene and are attributed to chemisorbed H on top and bottom surfaces. Repeated H$_2$ exposure and field emission yielded patches and then complete coverage of a crystalline $sqrt{3}$ $times$ $sqrt{3}$ R30{deg} phase, as well as less densely packed 3 $times$ 3 and 4 $times$ 4 structures. The hydrogenation can be reversed by imaging with higher bias voltage.

تحميل البحث