ﻻ يوجد ملخص باللغة العربية
Using raising operators and geometric arguments, we establish formulas for the K-theory classes of degeneracy loci in classical types. We also find new determinantal and Pfaffian expressions for classical cases considered by Giambelli: the loci where a generic matrix drops rank, and where a generic symmetric or skew-symmetric matrix drops rank. In an appendix, we construct a K-theoretic Euler class for even-rank vector bundles with quadratic form, refining the Chow-theoretic class introduced by Edidin and Graham. We also establish a relation between top Chern classes of maximal isotropic subbundles, which is used in proving the type D degeneracy locus formulas.
In previous work, we employed a geometric method of Kazarian to prove Pfaffian formulas for a certain class of degeneracy loci in types B, C, and D. Here we refine that approach to obtain formulas for more general loci, including those coming from al
We define degeneracy loci for vector bundles with structure group $G_2$, and give formulas for their cohomology (or Chow) classes in terms of the Chern classes of the bundles involved. When the base is a point, such formulas are part of the theory fo
Fulton defined classes in the Chow group of a quasi-projective scheme $M$ which reduce to its Chern classes when $M$ is smooth. When $M$ has a perfect obstruction theory, Siebert gave a formula for its virtual cycle in terms of its total Fulton class
Let V be a smooth equidimensional quasi-affine variety of dimension r over the complex numbers $C$ and let $F$ be a $(ptimes s)$-matrix of coordinate functions of $C[V]$, where $sge p+r$. The pair $(V,F)$ determines a vector bundle $E$ of rank $s-p$
We express nested Hilbert schemes of points and curves on a smooth projective surface as virtual resolutions of degeneracy loci of maps of vector bundles on smooth ambient spaces. We show how to modify the resulting obstruction theories to produce