ﻻ يوجد ملخص باللغة العربية
In this paper, we address the problem of estimating transport surplus (a.k.a. matching affinity) in high dimensional optimal transport problems. Classical optimal transport theory specifies the matching affinity and determines the optimal joint distribution. In contrast, we study the inverse problem of estimating matching affinity based on the observation of the joint distribution, using an entropic regularization of the problem. To accommodate high dimensionality of the data, we propose a novel method that incorporates a nuclear norm regularization which effectively enforces a rank constraint on the affinity matrix. The low-rank matrix estimated in this way reveals the main factors which are relevant for matching.
Matrix completion is a modern missing data problem where both the missing structure and the underlying parameter are high dimensional. Although missing structure is a key component to any missing data problems, existing matrix completion methods ofte
We consider the problem of estimating high-dimensional covariance matrices of a particular structure, which is a summation of low rank and sparse matrices. This covariance structure has a wide range of applications including factor analysis and rando
We consider the problem of uncertainty quantification for an unknown low-rank matrix $mathbf{X}$, given a partial and noisy observation of its entries. This quantification of uncertainty is essential for many real-world problems, including image proc
Various problems in data analysis and statistical genetics call for recovery of a column-sparse, low-rank matrix from noisy observations. We propose ReFACTor, a simple variation of the classical Truncated Singular Value Decomposition (TSVD) algorithm
In this paper, the problem of matrix rank minimization under affine constraints is addressed. The state-of-the-art algorithms can recover matrices with a rank much less than what is sufficient for the uniqueness of the solution of this optimization p