ترغب بنشر مسار تعليمي؟ اضغط هنا

Antisymmetrized molecular dynamics studies for exotic clustering phenomena in neutron-rich nuclei

427   0   0.0 ( 0 )
 نشر من قبل Masaaki Kimura
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a review of recent works on clustering phenomena in unstable nuclei studied by antisymmetrized molecular dynamics (AMD). The AMD studies in these decades have uncovered novel types of clustering phenomena brought about by the excess neutrons. Among them, this review focuses on the molecule-like structure of unstable nuclei. One of the earliest discussions on the clustering in unstable nuclei was made for neutron-rich Be and B isotopes. AMD calculations predicted that the ground state clustering is enhanced or reduced depending on the number of excess neutrons. Today, the experiments are confirming this prediction as the change of the proton radii. Behind this enhancement and reduction of the clustering, there are underlying shell effects called molecular- and atomic-orbits. These orbits form covalent and ionic bonding of the clusters analogous to the atomic molecules. It was found that this molecular-orbit picture reasonably explains the low-lying spectra of Be isotopes. The molecular-orbit picture is extended to other systems having parity asymmetric cluster cores and to the three cluster systems. O and Ne isotopes are the candidates of the former, while the $3alpha$ linear chains in C isotopes are the latter. For both subjects, many intensive studies are now in progress. We also pay a special attention to the observables which are the fingerprint of the clustering. In particular, we focus on the monopole and dipole transitions which are recently regarded as good probe for the clustering. We discuss how they have and will reveal the exotic clustering.



قيم البحث

اقرأ أيضاً

We discuss the present status of the description of the structure of the very neutron rich nuclei, in the framework of modern large scale shell model calculations. Particular attention is paid to the interaction related issues, as well as to the prob lems of the shell model approach at the neutron drip line. We present detailed results for nuclei around N=20 and, more briefly, we discuss some salient features of the regions close to N=8, 28 and 40. We show that most experimental features can be understood in a shell model context.
The single particle and bulk properties of the neutron-rich nuclei constrain fundamental issues in nuclear physics and nuclear astrophysics like the limits of existence of quantum many body systems (atomic nuclei), the equation of state of neutron-ri ch matter, neutron star, nucleosynthesis, evolution of stars, neutron star merging etc.. The state of the art of Coulomb breakup of the neutron-rich nuclei has been used to explore those properties. Unambiguous information on detailed components of the ground-state wave-function along with quantum numbers of the valence neutron of the nuclei have been obtained from the measurement of threshold strength along with the $gamma$-rays spectra of the core following Coulomb breakup. The shape of this threshold strength is a finger-print of the quantum numbers of the nucleon. We investigated the ground-state properties of the neutron-rich Na, Mg, Al nuclei around N $sim$ 20 using this method at GSI, Darmstadt. Very clear evidence has been observed for melting and merging of long cherished magic shell gaps at N = 20, 28. The evanescent neutron-rich nuclei imprint their existence in stellar explosive scenarios (r-process etc.). Coulomb dissociation (CD) is one of the important indirect measurements of the capture cross-section which may provide valuable input to the model for star evolution process, particularly the r-process. Some valuable bulk properties of the neutron-rich nuclei like the density dependent symmetry energy,neutron skin etc. play a key role in understanding cosmic phenomena and these properties have been studied via electromagnetic excitation. Preliminary results of electromagnetic excitation of the neutron-rich nucleus, $^{32}$Mg are presented.
Tensor-optimized antisymmetrized molecular dynamics (TOAMD) is the basis of the successive variational method for nuclear many-body problem. We apply TOAMD to finite nuclei to be described by the central interaction with strong short-range repulsion, and compare the results with the unitary correlation operator method (UCOM). In TOAMD, the pair-type correlation functions and their multiple products are operated to the AMD wave function. We show the results of TOAMD using the Malfliet-Tjon central potential containing the strong short-range repulsion. Adding the double products of the correlation functions in TOAMD, the binding energies are converged quickly to the exact values of the few-body calculations for s-shell nuclei. This indicates the high efficiency of TOAMD for treating the short-range repulsion in nuclei. We also employ the s-wave configurations of nuclei with the central part of UCOM, which reduces the short-range relative amplitudes of nucleon pair in nuclei to avoid the short-range repulsion. In UCOM, we further perform the superposition of the s-wave configurations with various size parameters, which provides a satisfactory solution of energies close to the exact and TOAMD values.
We develop a new formalism to treat nuclear many-body systems using bare nucleon-nucleon interaction. It has become evident that the tensor interaction plays important role in nuclear many-body systems due to the role of the pion in strongly interact ing system. We take the antisymmetrized molecular dynamics (AMD) as a basic framework and add a tensor correlation operator acting on the AMD wave function using the concept of the tensor-optimized shell model (TOSM). We demonstrate a systematical and straightforward formulation utilizing the Gaussian integration and differentiation method and the antisymmetrization technique to calculate all the matrix elements of the many-body Hamiltonian. We can include the three-body interaction naturally and calculate the matrix elements systematically in the progressive order of the tensor correlation operator. We call the new formalism tensor-optimized antisymmetrized molecular dynamics.
{Full three dimensional static and dynamic mean field calculations using collocation basis splines with a Skyrme type Hamiltonian are described. This program is developed to address the difficult theoretical challenges offered by exotic nuclei. Groun d state and deformation properties are calculated using static Hartree-Fock, Hartree-Fock+BCS and constrained Hartree-Fock models. Collective properties, such as reaction rates and resonances, are described using a new alternate method for evaluating linear response theory, which is constructed directly on top of the static calculation. This provides a consistent description of the ground state, deformation and collective nuclear properties. Sample results are presented for the giant multiple resonances of $^{16}$O. }
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا