ﻻ يوجد ملخص باللغة العربية
We describe convex hulls of the simplest compact space curves, reducible quartics consisting of two circles. When the circles do not meet in complex projective space, their algebraic boundary contains an irrational ruled surface of degree eight whose ruling forms a genus one curve. We classify which curves arise, classify the face lattices of the convex hulls, and determine which are spectrahedra. We also discuss an approach to these convex hulls using projective duality.
Arithmetic automata recognize infinite words of digits denoting decompositions of real and integer vectors. These automata are known expressive and efficient enough to represent the whole set of solutions of complex linear constraints combining both
We investigate the vertex curve, that is the set of points in the hyperbolic region of a smooth surface in real 3-space at which there is a circle in the tangent plane having at least 5-point contact with the surface. The vertex curve is related to t
Given a finite set of points $P subseteq mathbb{R}^d$, we would like to find a small subset $S subseteq P$ such that the convex hull of $S$ approximately contains $P$. More formally, every point in $P$ is within distance $epsilon$ from the convex hul
A subset $A$ of a Banach space is called Banach-Saks when every sequence in $A$ has a Ces{`a}ro convergent subsequence. Our interest here focusses on the following problem: is the convex hull of a Banach-Saks set again Banach-Saks? By means of a comb
High-throughput computational materials searches generate large databases of locally-stable structures. Conventionally, the needle-in-a-haystack search for the few experimentally-synthesizable compounds is performed using a convex hull construction,