ترغب بنشر مسار تعليمي؟ اضغط هنا

Protecting coherence in the non-Hermitian two-level system

98   0   0.0 ( 0 )
 نشر من قبل Weichen Wang
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have constructed a non-Hermitian two-level system (a PT -symmetric system) in dissipative environments, and investigated the quantum coherence in the non-Hermitian two-level system. Our results show that, quantum coherence can be created by PT -symmetric systems, even if the initial state of the twolevel system is incoherent state. Even though two-level system is interacted with dissipative environments, the quantum coherence exhibits a long-lived revival, and can be protected. We find that the two-level system can obtain more coherence with the coupling strength {Omega} increases. And we should point out that the PT -symmetric system can be regarded as a good candidate system for creation of the long-lived quantum coherence in dissipative environments.



قيم البحث

اقرأ أيضاً

We introduce an accurate non-Hermitian Schrodinger-type approximation of Bloch optical equations for two-level systems. This approximation provides a complete description of the excitation, relaxation and decoherence dynamics in both weak and strong laser fields. In this approach, it is sufficient to propagate the wave function of the quantum system instead of the density matrix, providing that relaxation and dephasing are taken into account via automatically-adjusted time-dependent gain and decay rates. The developed formalism is applied to the problem of scattering and absorption of electromagnetic radiation by a thin layer comprised of interacting two-level emitters.
In this letter, we investigate the effects of non-Hermitian driving on quantum coherence in a bipartite system. The results that the dynamical localization destroyed by the Hermitian interaction revives are an evidence of the restoration of quantum c oherence by non-Hermitian driving. Besides, the entanglement between the two subsystems also decays with the boosting of non-hermitian driving strength, which provides another evidence that non-Hermitian driving will protect quantum coherence. The physics behind this phenomenon is the domination of the quasieigenstate with maximum imaginary value of the quasieigenvalue on the dynamics of the non-Hermitian system. Our discovery establishes a restoration mechanism of quantum coherence in interacting and dissipative quantum systems, which is highly relevant to experiments in diverse fields from many-body physics to quantum information.
Using an ensemble of atoms in an optical cavity, we engineer a family of nonlocal Heisenberg Hamiltonians with continuously tunable anisotropy of the spin-spin couplings. We thus gain access to a rich phase diagram, including a paramagnetic-to-ferrom agnetic Ising phase transition that manifests as a diverging magnetic susceptibility at the critical point. The susceptibility displays a symmetry between Ising interactions and XY (spin-exchange) interactions of the opposite sign, which is indicative of the spatially extended atomic system behaving as a single collective spin. Images of the magnetization dynamics show that spin-exchange interactions protect the coherence of the collective spin, even against inhomogeneous fields that completely dephase the non-interacting and Ising systems. Our results underscore prospects for harnessing spin-exchange interactions to enhance the robustness of spin squeezing protocols.
Due to its superior coherent and optical properties at room temperature, the nitrogen-vacancy (N-V ) center in diamond has become a promising quantum probe for nanoscale quantum sensing. However, the application of N-V containing nanodiamonds to quan tum sensing suffers from their relatively poor spin coherence times. Here we demonstrate energy efficient protection of N-V spin coherence in nanodiamonds using concatenated continuous dynamical decoupling, which exhibits excellent performance with less stringent microwave power requirement. When applied to nanodiamonds in living cells we are able to extend the spin coherence time by an order of magnitude to the $T_1$-limit of up to $30mu$s. Further analysis demonstrates concomitant improvements of sensing performance which shows that our results provide an important step towards in vivo quantum sensing using N-V centers in nanodiamond.
In this work, a classical-quantum correspondence for two-level pseudo-Hermitian systems is proposed and analyzed. We show that the presence of a complex external field can be described by a pseudo-Hermitian Hamiltonian if there is a suitable canonica l transformation that links it to a real field. We construct a covariant quantization scheme which maps canonically related pseudoclassical theories to unitarily equivalent quantum realizations, such that there is a unique metric-inducing isometry between the distinct Hilbert spaces. In this setting, the pseudo-Hermiticity condition for the operators induces an involution which guarantees the reality of the corresponding symbols, even for the complex field case. We assign a physical meaning for the dynamics in the presence of a complex field by constructing a classical correspondence. As an application of our theoretical framework, we propose a damped version of the Rabi problem and determine the configuration of the parameters of the setup for which damping is completely suppressed. The experimental viability of the proposal is studied within a specific context. We suggest that the main theoretical results developed in the present work could be experimentally verified.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا