ﻻ يوجد ملخص باللغة العربية
Grazing incidence interferometry has been applied to rough planar and cylindrical surfaces. As suitable beam splitters diffractive optical phase elements are quite common because these allow for the same test sensitivity for all surface points. But a rotational-symmetric convex aspheric has two curvatures which reduces the measurable region to a meridian through the vortex of the aspheric, which is in contrast to cylindrical surfaces having a one-dimensional curvature which allows the test of the whole surface in gracing incidence. The meridional limitation for rotational-symmetric aspherics nevertheless offers the possibility to measure single meridians in a one-step measurement. An extension to the complete surface can be obtained by rotating the aspheric around its vortex within the frame of the test interferometer.
Electromagnetic waves at grazing incidence onto a planar medium are analogous to zero energy quantum particles incident onto a potential well. In this limit waves are typically completely reflected. Here we explore dielectric profiles supporting opti
We here report coherent reflection of thermal He atom beams from various microscopically rough surfaces at grazing incidence. For a sufficiently small normal component $k_z$ of the incident wave-vector of the atom the reflection probability is found
Diffraction patterns produced by grazing scattering of fast atoms from insulator surfaces are used to examine the atom-surface interaction. The method is applied to He atoms colliding with a LiF(001) surface along axial crystallographic channels. The
We theoretically address grazing incidence fast atom diffraction (GIFAD) for H atoms impinging on a LiF(001) surface. Our model combines a description of the H-LiF(001) interaction obtained from Density Functional Theory calculations with a semi-quan
For the reliable fabrication of the current and next generation of nanostructures it is essential to be able to determine their material composition and dimensional parameters. Using the grazing incidence X-ray fluoresence technique, which is taking