ﻻ يوجد ملخص باللغة العربية
We study locking phenomena of two strongly coupled, high-quality factor nanomechanical resonator modes subject to a common parametric drive at a single drive frequency. By controlled dielectric gradient forces we tune the resonance frequencies of the flexural in-plane and out-of-plane oscillation of the high stress silicon nitride string through their mutual avoided crossing. For the case of the strong common parametric drive signal-idler generation via parametric oscillation is observed, analogously to the framework of nonlinear optical effects in an optical parametric oscillator. Frequency tuning of the signal and idler resonances is demonstrated. When the resonance frequencies of signal and idler get closer to each other, partial injection locking, injection pulling and complete injection locking to half of the drive frequency occurs depending on the pump strength. Furthermore, satellite resonances, symmetrically off-set from signal and idler by their beat-note, are observed which can be attributed to degenerate four-wave-mixing in the highly nonlinear mechanical oscillations.
Spin Hall oscillators (SHO) are promising candidates for the generation, detection and amplification of high frequency signals, that are tunable through a wide range of operating frequencies. They offer to be read out electrically, magnetically and o
We show two effects as a result of considering the second-order correction to the spectrum of a nanomechanical resonator electrostatically coupled to a Cooper-pair box. The spectrum of the Cooper-pair box is modified in a way which depends on the Foc
We present an analysis of the dynamics of a nanomechanical resonator coupled to a superconducting single electron transistor (SSET) in the vicinity of the Josephson quasiparticle (JQP) and double Josephson quasiparticle (DJQP) resonances. For weak co
Frequency comb generation in microresonators at visible wavelengths has found applications in a variety of areas such as metrology, sensing, and imaging. To achieve Kerr combs based on four-wave mixing in a microresonator, dispersion must be in the a
Superconducting qubits acting as artificial two-level atoms allow for controlled variation of the symmetry properties which govern the selection rules for single and multiphoton excitation. We spectroscopically analyze a superconducting qubit-resonat