ترغب بنشر مسار تعليمي؟ اضغط هنا

Strong isospin violation and chiral logarithms in the baryon spectrum

80   0   0.0 ( 0 )
 نشر من قبل Andr\\'e Walker-Loud
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a precise lattice QCD calculation of the contribution to the neutron-proton mass splitting arising from strong isospin breaking, $m_n-m_p|_{QCD}=2.32pm0.17$ MeV. We also determine $m_{Xi^-} - m_{Xi^0}|_{QCD} = 5.44pm0.31$ MeV. The calculation is performed at three values of the pion mass, with several values of the quark mass splitting and multiple lattice volumes, but only a single lattice spacing and an estimate of discretization errors. The calculations are performed on the anisotropic clover-Wilson ensembles generated by the Hadron Spectrum Collaboration. The omega-baryon mass is used to set the scale $a_t^{-1}=6111pm127$ MeV, while the kaon masses are used to determine the value of the light-quark mass spitting. The nucleon mass splitting is then determined as a function of the pion mass. We observe, for the first time, conclusive evidence for non-analytic light quark mass dependence in lattice QCD calculations of the baryon spectrum. When left as a free parameter, the fits prefer a nucleon axial coupling of $g_A=1.24(56)$. To highlight the presence of this chiral logarithm in the nucleon mass splitting, we also compute the isospin splitting in the cascade-baryon system which is less sensitive to chiral dynamics. Finally, we update the best lattice QCD determination of the CP-odd pion-nucleon coupling that would arise from a non-zero QCD theta-term, $bar{g}_0 / (sqrt{2}f_pi) = (14.7pm1.8pm1.4) cdot 10^{-3} bar{theta}$. The original lattice QCD correlation functions, analysis results and extrapolated quantities are packaged in HDF5 files made publicly available including a simple Python script to access the numerical results, construct effective mass plots along with our analysis results, and perform the extrapolations of various quantities determined in this work.



قيم البحث

اقرأ أيضاً

175 - Sz. Borsanyi , S. Durr , Z. Fodor 2013
While electromagnetic and up-down quark mass difference effects on octet baryon masses are very small, they have important consequences. The stability of the hydrogen atom against beta decay is a prominent example. Here we include these effects by ad ding them to valence quarks in a lattice QCD calculation based on $N_f=2+1$ simulations with 5 lattice spacings down to 0.054 fm, lattice sizes up to 6 fm and average up-down quark masses all the way down to their physical value. This allows us to gain control over all systematic errors, except for the one associated with neglecting electromagnetism in the sea. We compute the octet baryon isomultiplet mass splittings, as well as the individual contributions from electromagnetism and the up-down quark mass difference. Our results for the total splittings are in good agreement with experiment.
We study the phase diagram of QCD at finite isospin density using two flavors of staggered quarks. We investigate the low temperature region of the phase diagram where we find a pion condensation phase at high chemical potential. We started a basic a nalysis of the spectrum at finite isospin density. In particular, we measured pion, rho and nucleon masses inside and outside of the pion condensation phase. In agreement with previous studies in two-color QCD at finite baryon density we find that the Polyakov loop does not depend on the density in the staggered formulation.
Lattice QCD simulations are now reaching a precision where isospin breaking effects become important. Previously, we have developed a program to systematically investigate the pattern of flavor symmetry beaking within QCD and successfully applied it to meson and baryon masses involving up, down and strange quarks. In this Letter we extend the calculations to QCD + QED and present our first results on isospin splittings in the pseudoscalar meson and baryon octets. In particular, we obtain the nucleon mass difference of $M_n-M_p=1.35(18)(8),mbox{MeV}$ and the electromagnetic contribution to the pion splitting $M_{pi^+}-M_{pi^0}=4.60(20),mbox{MeV}$. Further we report first determination of the separation between strong and electromagnetic contributions in the $bar{MS}$ scheme.
The origin of the low-lying nature of the $N$*(1440), or Roper resonance, has been the subject of significant interest for many years, including several investigations using lattice QCD. The majority of lattice studies have not observed a low-lying e xcited state energy level in the region of the Roper resonance. However, it has been claimed that chiral symmetry could play an important role in our understanding of this resonance. The purpose of this study is to systematically examine the role of chiral symmetry in the low-lying nucleon spectrum by directly comparing the clover and overlap fermion actions. To ensure any differences in results are attributable to the choice of fermion action, simulations are performed on the same set of gauge field configurations at matched pion masses. Correlation matrix techniques are employed to determine the excitation energy of the first positive-parity excited state for each action. The clover and overlap actions show a remarkable level of agreement. We do not find any evidence that fermion action chiral symmetry plays a significant role in understanding the Roper resonance on the lattice.
State-of-the-art lattice QCD studies of hot and dense strongly interacting matter currently rely on extrapolation from zero or imaginary chemical potentials. The ill-posedness of numerical analytic continuation puts severe limitations on the reliabil ity of such methods. Here we use the more direct sign reweighting method to perform lattice QCD simulation of the QCD chiral transition at finite real baryon density on phenomenologically relevant lattices. This method does not require analytic continuation and avoids the overlap problem associated with generic reweighting schemes, so has only statistical but no uncontrolled systematic uncertainties for a fixed lattice setup. This opens up a new window to study hot and dense strongly interacting matter from first principles. We perform simulations up to a baryochemical potential-temperature ratio of $mu_B/T=2.5$ covering most of the RHIC Beam Energy Scan range in the chemical potential. We also clarify the connection of the approach to the more traditional phase reweighting method.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا