ﻻ يوجد ملخص باللغة العربية
Solving the challenging problem of the amplification and generation of an electromagnetic field in nanostructures enables to implement many properties of the electromagnetic field at the nanoscale in novel practical applications. A first-principles quantum mechanical consideration of such a problem is sufficiently restricted by the exponentially large number of degrees of freedom, and does not allow the electromagnetic field dynamics to be described if it involves a high number of interacting atoms and modes of the electromagnetic field. Conversely, the classical description of electromagnetic fields is incorrect at the nanoscale due to the high level of quantum fluctuations connected to high dissipation and noise levels. In this paper, we develop the framework with a significantly reduced number of degrees of freedom, which describes the quantum spatial dynamics of electromagnetic fields interacting with atoms. As an example, we consider the interaction between atoms placed in a metallic subwavelength groove, and demonstrate that a spontaneously excited electromagnetic pulse propagates with the group velocity. The developed approach may be exploited to describe non-uniform amplification and propagation of electromagnetic fields in arbitrary dispersive dissipative systems.
Dissipative and dispersive optomechanical couplings are experimentally observed in a photonic crystal split-beam nanocavity optimized for detecting nanoscale sources of torque. Dissipative coupling of up to approximately $500$ MHz/nm and dispersive c
We map electron spin dynamics from time to space in quantum wires with spatially uniform and oscillating Rashba spin-orbit coupling. The presence of the spin-orbit interaction introduces pseudo-Zeeman couplings of the electron spins to effective magn
We theoretically investigate basic properties of nonequilibrium steady states of periodically-driven open quantum systems based on the full solution of the Maxwell-Bloch equation. In a resonantly driving condition, we find that the transverse relaxat
Coupling with an external environment inevitably affects the dynamics of a quantum system. Here, we consider how charging performances of a quantum battery, modelled as a two level system, are influenced by the presence of an Ohmic thermal reservoir.
Even if individual two-dimensional materials own various interesting and unexpected properties, the stacking of such layers leads to van der Waals solids which unite the characteristics of two dimensions with novel features originating from the inter