ﻻ يوجد ملخص باللغة العربية
Using novel instrumentation to combine extreme conditions of intense pulsed magnetic field up to 60~T and high pressure up to 4~GPa, we have established the three-dimensional (3D) magnetic field - pressure - temperature phase diagram of a pure stoichiometric heavy-fermion antiferromagnet (CeRh$_2$Si$_2$). We find a temperature- and pressure-dependent decoupling of the critical and pseudo-metamagnetic fields, at the borderlines of antiferromagnetism and strongly-correlated paramagnetism. This 3D phase diagram is representative of a class of heavy-fermion Ising antiferromagnets, where long-range magnetic ordering is decoupled from a maximum in the magnetic susceptibility. The combination of extreme conditions enabled us to characterize different quantum phase transitions, where peculiar quantum critical properties are revealed. The interest to couple the effects of magnetic field and pressure on quantum-critical correlated-electron systems is stressed.
A study by specific heat of a polycrystalline sample of the low-dimensional magnetic system Y$_2$BaCuO$_5$ is presented. Magnetic fields up to 14 T are applied and permit to extract the ($T$,$H$) phase diagram. Below $mu_0H^*simeq2$ T, the Neel tempe
A review of recent state-of-the-art pulsed field experiments performed on URu$_2$Si$_2$ under a magnetic field applied along its easy magnetic axis $mathbf{c}$ is given. Resistivity, magnetization, magnetic susceptibility, Shubnikov-de Haas, and neut
We explore the field-temperature phase diagram of the XY pyrochlore antiferromagnet Er$_2$Ti$_2$O$_7$, by means of magnetization and neutron diffraction experiments. Depending on the field strength and direction relative to the high symmetry cubic di
We report a neutron scattering study of the magnetic excitation spectrum in each of the three temperature and pressure driven phases of URu$_2$Si$_2$. We find qualitatively similar excitations throughout the (H0L) scattering plane in the hidden order
We report $^{51}$V nuclear magnetic resonance (NMR) and inelastic neutron scattering (INS) measurements on a quasi-1D antiferromagnet BaCo$_2$V$_2$O$_8$ under transverse field along the [010] direction. The scaling behavior of the spin-lattice relaxa