Bayesian Inference for State Space Models using Block and Correlated Pseudo Marginal Methods


الملخص بالإنكليزية

This article addresses the problem of efficient Bayesian inference in dynamic systems using particle methods and makes a number of contributions. First, we develop a correlated pseudo-marginal (CPM) approach for Bayesian inference in state space (SS) models that is based on filtering the disturbances, rather than the states. This approach is useful when the state transition density is intractable or inefficient to compute, and also when the dimension of the disturbance is lower than the dimension of the state. Second, we propose a block pseudo-marginal (BPM) method that uses as the estimate of the likelihood the average of G independent unbiased estimates of the likelihood. We associate a set of underlying uniform of standard normal random numbers used to construct each of the individual unbiased likelihood estimates and then use component-wise Markov Chain Monte Carlo to update the parameter vector jointly with one set of these random numbers at a time. This induces a correlation of approximately 1-1/G between the logs of the estimated likelihood at the proposed and current values of the model parameters. Third, we show for some non-stationary state space models that the BPM approach is much more efficient than the CPM approach, because it is difficult to translate the high correlation in the underlying random numbers to high correlation between the logs of the likelihood estimates. Although our focus has been on applying the BPM method to state space models, our results and approach can be used in a wide range of applications of the PM method, such as panel data models, subsampling problems and approximate Bayesian computation.

تحميل البحث