ﻻ يوجد ملخص باللغة العربية
Moessbauer spectroscopy measurements were performed for the temperature range between 4.2 K and 300 K in a transmission geometry applying 14.41-keV resonant line in 57Fe for PrFeAsO the latter being a parent compound of the iron-based superconductors belonging to the 1111 family. It was found that an itinerant 3d magnetic order develops at about 165 K and it is accompanied by an orthorhombic distortion of the chemical unit cell. A complete longitudinal 3d incommensurate spin density wave (SDW) order develops at about 140 K. Transferred hyperfine magnetic field generated by the praseodymium magnetic order on iron nuclei is seen at 12.8 K and below, i.e., below magnetic order of praseodymium magnetic moments. It is oriented perpendicular to the field of SDW on iron nuclei. The shape of SDW is almost rectangular at low temperatures and it transforms into roughly triangular form around nematic transition at about 140 K. Praseodymium magnetic order leads to the substantial enhancement of SDW due to the large orbital contribution to the magnetic moment of praseodymium. A transferred field indicates presence of strong magnetic susceptibility anisotropy in the [b-c] plane while following rotation of praseodymium magnetic moments in this plane with lowering temperature. It was found that nematic phase region is a region of incoherent spin density wavelets typical for a critical region.
A review of the magnetism in the parent compounds of the iron-based superconductors is given based on the transmission Moessbauer spectroscopy of 57Fe and 151Eu. It was found that the 3d magnetism is of the itinerant character with varying admixture
The compound BaFe2Se3 (Pnma) has been synthesized in the form of single crystals with the average composition Ba0.992Fe1.998Se3. The Moessbauer spectroscopy used for investigation of the valence states of Fe in this compound at temperature ranging fr
57Fe and 151Eu Moessbauer spectra were obtained versus temperature for Eu0.57Ca0.43Fe2As2 compound with 3d and 4f magnetic order and Eu0.73Ca0.27(Fe0.87Co0.13)2As2 re-entrant superconductor, where the finite resistivity reappears while approaching th
We elucidate the existing controversies in the newly discovered K-doped iron selenide (KxFe2-ySe2-z) superconductors. The stoichiometric KFe2Se2 with surd2timessurd2 charge ordering was identified as the parent compound of KxFe2-ySe2-z superconductor
We investigate the transient electronic structure of BaFe2As2, a parent compound of iron-based superconductors, by time- and angle-resolved photoemission spectroscopy. In order to probe the entire Brillouin zone, we utilize extreme ultraviolet photon