ﻻ يوجد ملخص باللغة العربية
The procedure commonly used in textbooks for determining the eigenvalues and eigenstates for a particle in an attractive Coulomb potential is not symmetric in the way the boundary conditions at $r=0$ and $r rightarrow infty$ are considered. We highlight this fact by solving a model for the Coulomb potential with a cutoff (representing the finite extent of the nucleus); in the limit that the cutoff is reduced to zero we recover the standard result, albeit in a non-standard way. This example is used to emphasize that a more consistent approach to solving the Coulomb problem in quantum mechanics requires an examination of the non-standard solution. The end result is, of course, the same.
It is demonstrated how quantum mechanics is generated by stochastic momentum kicks from the force carriers, transmitting the fundamental interactions between the point particles. The picture is consistent with quantum field theory and points out that
When compared to quantum mechanics, classical mechanics is often depicted in a specific metaphysical flavour: spatio-temporal realism or a Newtonian background is presented as an intrinsic fundamental classical presumption. However, the Hamiltonian f
We apply the ideas of effective field theory to nonrelativistic quantum mechanics. Utilizing an artificial boundary of ignorance as a calculational tool, we develop the effective theory using boundary conditions to encode short-ranged effects that ar
Can a simple microscopic model of space and time demonstrate Special Relativity as the macroscopic (aggregate) behavior of an ensemble ? The question will be investigated in three parts. First, it is shown that the Lorentz transformation formally ste
The Levi-Civita transformation is applied in the two-dimensional (2D) Dirac and Klein-Gordon (KG) equations with equal external scalar and vector potentials. The Coulomb and harmonic oscillator problems are connected via the Levi-Civita transformatio