ترغب بنشر مسار تعليمي؟ اضغط هنا

Large-Scale Image Retrieval with Attentive Deep Local Features

109   0   0.0 ( 0 )
 نشر من قبل Andre Araujo
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose an attentive local feature descriptor suitable for large-scale image retrieval, referred to as DELF (DEep Local Feature). The new feature is based on convolutional neural networks, which are trained only with image-level annotations on a landmark image dataset. To identify semantically useful local features for image retrieval, we also propose an attention mechanism for keypoint selection, which shares most network layers with the descriptor. This framework can be used for image retrieval as a drop-in replacement for other keypoint detectors and descriptors, enabling more accurate feature matching and geometric verification. Our system produces reliable confidence scores to reject false positives---in particular, it is robust against queries that have no correct match in the database. To evaluate the proposed descriptor, we introduce a new large-scale dataset, referred to as Google-Landmarks dataset, which involves challenges in both database and query such as background clutter, partial occlusion, multiple landmarks, objects in variable scales, etc. We show that DELF outperforms the state-of-the-art global and local descriptors in the large-scale setting by significant margins. Code and dataset can be found at the project webpage: https://github.com/tensorflow/models/tree/master/research/delf .



قيم البحث

اقرأ أيضاً

Remote Sensing Image Retrieval remains a challenging topic due to the special nature of Remote Sensing Imagery. Such images contain various different semantic objects, which clearly complicates the retrieval task. In this paper, we present an image r etrieval pipeline that uses attentive, local convolutional features and aggregates them using the Vector of Locally Aggregated Descriptors (VLAD) to produce a global descriptor. We study various system parameters such as the multiplicative and additive attention mechanisms and descriptor dimensionality. We propose a query expansion method that requires no external inputs. Experiments demonstrate that even without training, the local convolutional features and global representation outperform other systems. After system tuning, we can achieve state-of-the-art or competitive results. Furthermore, we observe that our query expansion method increases overall system performance by about 3%, using only the top-three retrieved images. Finally, we show how dimensionality reduction produces compact descriptors with increased retrieval performance and fast retrieval computation times, e.g. 50% faster than the current systems.
102 - Min Yang , Dongliang He , Miao Fan 2021
Image Retrieval is a fundamental task of obtaining images similar to the query one from a database. A common image retrieval practice is to firstly retrieve candidate images via similarity search using global image features and then re-rank the candi dates by leveraging their local features. Previous learning-based studies mainly focus on either global or local image representation learning to tackle the retrieval task. In this paper, we abandon the two-stage paradigm and seek to design an effective single-stage solution by integrating local and global information inside images into compact image representations. Specifically, we propose a Deep Orthogonal Local and Global (DOLG) information fusion framework for end-to-end image retrieval. It attentively extracts representative local information with multi-atrous convolutions and self-attention at first. Components orthogonal to the global image representation are then extracted from the local information. At last, the orthogonal components are concatenated with the global representation as a complementary, and then aggregation is performed to generate the final representation. The whole framework is end-to-end differentiable and can be trained with image-level labels. Extensive experimental results validate the effectiveness of our solution and show that our model achieves state-of-the-art image retrieval performances on Revisited Oxford and Paris datasets.
In this paper, we address the problem of image retrieval by learning images representation based on the activations of a Convolutional Neural Network. We present an end-to-end trainable network architecture that exploits a novel multi-scale local poo ling based on NetVLAD and a triplet mining procedure based on samples difficulty to obtain an effective image representation. Extensive experiments show that our approach is able to reach state-of-the-art results on three standard datasets.
We propose an unsupervised hashing method which aims to produce binary codes that preserve the ranking induced by a real-valued representation. Such compact hash codes enable the complete elimination of real-valued feature storage and allow for signi ficant reduction of the computation complexity and storage cost of large-scale image retrieval applications. Specifically, we learn a neural network-based model, which transforms the input representation into a binary representation. We formalize the training objective of the network in an intuitive and effective way, considering each training sample as a query and aiming to obtain the same retrieval results using the produced hash codes as those obtained with the original features. This training formulation directly optimizes the hashing model for the target usage of the hash codes it produces. We further explore the addition of a decoder trained to obtain an approximated reconstruction of the original features. At test time, we retrieved the most promising database samples with an efficient graph-based search procedure using only our hash codes and perform re-ranking using the reconstructed features, thus without needing to access the original features at all. Experiments conducted on multiple publicly available large-scale datasets show that our method consistently outperforms all compared state-of-the-art unsupervised hashing methods and that the reconstruction procedure can effectively boost the search accuracy with a minimal constant additional cost.
Image retrieval is the problem of searching an image database for items that are similar to a query image. To address this task, two main types of image representations have been studied: global and local image features. In this work, our key contrib ution is to unify global and local features into a single deep model, enabling accurate retrieval with efficient feature extraction. We refer to the new model as DELG, standing for DEep Local and Global features. We leverage lessons from recent feature learning work and propose a model that combines generalized mean pooling for global features and attentive selection for local features. The entire network can be learned end-to-end by carefully balancing the gradient flow between two heads -- requiring only image-level labels. We also introduce an autoencoder-based dimensionality reduction technique for local features, which is integrated into the model, improving training efficiency and matching performance. Comprehensive experiments show that our model achieves state-of-the-art image retrieval on the Revisited Oxford and Paris datasets, and state-of-the-art single-model instance-level recognition on the Google Landmarks dataset v2. Code and models are available at https://github.com/tensorflow/models/tree/master/research/delf .
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا