ﻻ يوجد ملخص باللغة العربية
We report on Raman experiments performed on a single crystal MoTe$_2$ sample. The system belongs to the wide family of Transition Metal Dichalcogenides which includes several of the most interesting two dimensional materials for both basic and applied physics. Measurements were performed in the standard basal plane configuration, by placing the $ab$ plane of the crystal perpendicular to the wave vector $k_i$ of the incident beam to explore the in plane vibrational modes, and in the edge plane configuration with $k_i$ perpendicular to the crystal $c$ axis, thus mainly exciting out-of-plane modes. For both configurations we performed a polarization-dependent Raman study and we were able to provide a complete assignment of the observed first- and second-order Raman peaks fully exploiting the polarization selection rules. Present findings are in complete agreement with previous first-order Raman data whereas a thorough analysis of the second-order Raman bands, either in basal- or edge-plane configurations, provides new information and a precise assignment of these spectral structures. In particular, we have observed Raman active modes of the $M$ point of the Brillouin zone previously predicted by ab-initio calculations and ascribed to either combination or overtone but never previously measured.
We study the second-order Raman process of mono- and few-layer MoTe$_2$, by combining {em ab initio} density functional perturbation calculations with experimental Raman spectroscopy using 532, 633 and 785 nm excitation lasers. The calculated electro
In this work, we carry out first-principles calculations and lattice mode analysis to investigate the polarization switching mechanism in HfO$_2$. Because the stability of the polar orthorhombic $Pca2_1$ phase of HfO$_2$ arises from a trilinear coupl
We present an textit{ab initio} study based on density-functional theory of first- and second-order Raman spectra of graphene-based materials with different stacking arrangements and numbers of layers. Going from monolayer and bilayer graphene to per
Resonant Raman spectra of single layer WS$_{2}$ flakes are presented. A second order Raman peak (2LA) appears under resonant excitation with a separation from the E$^{1}_{2g}$ mode of only $4$cm$^{-1}$. Depending on the intensity ratio and the respec
We report two new first-order Raman modes in the spectra of few-layer MoS$_2$ at 286~cm$^{-1}$ and 471~cm$^{-1}$ for excitation energies above 2.4~eV. These modes appear only in few-layer MoS$_2$; therefore their absence provides an easy and accurate