ﻻ يوجد ملخص باللغة العربية
Zitterbewegung is a striking consequence of relativistic quantum mechanics which predicts that free Dirac electrons exhibit a rapid trembling motion even in the absence of external forces. The trembling motion of an electron results from the interference between the positive and the negative-energy solutions of the Dirac equation, separated by one MeV, leading to oscillations at extremely high frequencies which are out of reach experimentally. Recently, it was shown theoretically that electrons in III-V semiconductors are governed by similar equations in the presence of spin-orbit coupling. The small energy splittings up to meV result in Zitterbewegung at much smaller frequencies which should be experimentally accessible as an AC current. Here, we demonstrate the Zitterbewegung of electrons in a solid. We show that coherent electron Zitterbewegung can be triggered by initializing an ensemble of electrons in the same spin states in strained n-InGaAs and is probed as an AC current at GHz frequencies. Its amplitude is shown to increase linearly with both the spin-orbit coupling strength and the Larmor frequency of the external magnetic field. The latter dependence is the hallmark of the dynamical generation mechanism of the oscillatory motion of the Zitterbewegung. Our results demonstrate that relativistic quantum mechanics can be studied in a rather simple solid state system at moderate temperatures. Furthermore, the large amplitude of the AC current at high precession frequencies enables ultra-fast spin sensitive electric read-out in solids.
We derive a general and simple expression for the time-dependence of the position operator of a multi-band Hamiltonian with arbitrary matrix elements depending only on the momentum of the quasi-particle. Our result shows that in such systems the Zitt
We propose an optical lattice scheme which would permit the experimental observation of Zitterbewegung (ZB) with ultracold, neutral atoms. A four-level tripod variant of the usual setup for stimulated Raman adiabatic passage (STIRAP) has been propose
We investigate coherent electron dynamics in graphene, interacting with the electric field waveform of two orthogonally polarized, few-cycle laser pulses. Recently, we demonstrated that linearly polarized driving pulses lead to sub-optical-cycle Land
Understanding ultrafast coherent electron dynamics is necessary for application of a single-electron source to metrological standards, quantum information processing, including electron quantum optics, and quantum sensing. While the dynamics of an el
We study the back-action of a nearby measurement device on electrons undergoing coherent transfer via adiabatic passage (CTAP) in a triple-well system. The measurement is provided by a quantum point contact capacitively coupled to the middle well, th