ﻻ يوجد ملخص باللغة العربية
We develop a method for the accurate reconstruction of non-bandlimited finite rate of innovation signals on the sphere. For signals consisting of a finite number of Dirac functions on the sphere, we develop an annihilating filter based method for the accurate recovery of parameters of the Dirac functions using a finite number of observations of the bandlimited signal. In comparison to existing techniques, the proposed method enables more accurate reconstruction primarily due to better conditioning of systems involved in the recovery of parameters. For the recovery of $K$ Diracs on the sphere, the proposed method requires samples of the signal bandlimited in the spherical harmonic~(SH) domain at SH degree equal or greater than $ K + sqrt{K + frac{1}{4}} - frac{1}{2}$. In comparison to the existing state-of-the art technique, the required bandlimit, and consequently the number of samples, of the proposed method is the same or less. We also conduct numerical experiments to demonstrate that the proposed technique is more accurate than the existing methods by a factor of $10^{7}$ or more for $2 le Kle 20$.
We present the generalized iterative residual fitting (IRF) for the computation of the spherical harmonic transform (SHT) of band-limited signals on the sphere. The proposed method is based on the partitioning of the subspace of band-limited signals
The emerging field of signal processing on graph plays a more and more important role in processing signals and information related to networks. Existing works have shown that under certain conditions a smooth graph signal can be uniquely reconstruct
As technology grows, higher frequency signals are required to be processed in various applications. In order to digitize such signals, conventional analog to digital convertors are facing implementation challenges due to the higher sampling rates. He
It is shown that for any binary-input discrete memoryless channel $W$ with symmetric capacity $I(W)$ and any rate $R <I(W)$, the probability of block decoding error for polar coding under successive cancellation decoding satisfies $P_e le 2^{-N^beta}
We propose a sampling scheme that can perfectly reconstruct a collection of spikes on the sphere from samples of their lowpass-filtered observations. Central to our algorithm is a generalization of the annihilating filter method, a tool widely used i