ترغب بنشر مسار تعليمي؟ اضغط هنا

Electric Properties of Dirac Fermions Captured into 3D Nanoporous Graphene Networks

87   0   0.0 ( 0 )
 نشر من قبل Yoichi Tanabe
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Graphene, as a promising material of post-silicon electronics, opens a new paradigm for the novel electronic properties and device applications. On the other hand, the 2D feature of graphene makes it technically challenging to be integrated into 3D transistors with a sufficient processor capacity. Although there are many attempts to assemble 2D graphene into 3D structures, the characteristics of massless Dirac fermions cannot be well preserved in these materials for transistor applications. Here we report a high-performance graphene transistor by utilizing 3D nanoporous graphene which is comprised of an interconnected single graphene sheet and a commodious open porosity to infuse an ionic liquid for a tunable electronic state by applying electric fields. The 3D nanoporous graphene transistor, with high carrier mobility of 5000-7500 cm$^2$V$^{-1}$s$^{-1}$, exhibits two to three orders of magnitude higher electric conductance and capacitance than those of 2D graphene devices, along with preserved ambipolor electronic nature of Dirac cones. Moreover, the 3D graphene networks with Dirac fermions turn out to exhibit a unique nonlinear Hall resistance in a wide range of the gate voltages. The high quality 3D nanoporous graphene EDLT may open a new field for utilizing Dirac fermions in 3D network structures for various fundamental and practical applications.



قيم البحث

اقرأ أيضاً

Graphene nanoribbons are widely regarded as promising building blocks for next-generation carbon-based devices. A critical issue to their prospective applications is whether and to what degree their electronic structure can be externally controlled. Here, we combine simple model Hamiltonians with extensive first-principles calculations to investigate the response of armchair graphene nanoribbons to transverse electric fields. Such fields can be achieved either upon laterally gating the nanoribbon or incorporating ambipolar chemical co-dopants along the edges. We reveal that the field induces a semiconductor-to-semimetal transition, with the semimetallic phase featuring zero-energy Dirac fermions that propagate along the armchair edges. The transition occurs at critical fields that scale inversely with the width of the nanoribbons. These findings are universal to group-IV honeycomb lattices, including silicene and germanene nanoribbons, irrespective of the type of edge termination. Overall, our results create new opportunities to electrically engineer Dirac fermions in otherwise semiconducting graphene-like nanoribbons.
90 - Zhao Wang 2019
We study the influence of transverse electric fields on the interfacial forces between a graphene layer and a carbon nanotube tip by means of atomistic simulations, in which a Gaussian regularized charge-dipole potential is combined with classical fo rce fields. A significant effect of the field-induced electric charge on the normal force is observed. The normal pressure is found to be sensitive to the presence of a transverse electric field, while the friction force remains relatively invariant for the here-used field intensities. The contact can even be turned to have a negative coefficient of friction in a constant-distance scenario when the field strength reaches a critical value, which increases with decreasing tip-surface distance. These results shed light on how the frictional properties of nanomaterials can be controlled via applied electric fields.
We investigate the ultrafast relaxation dynamics of hot Dirac fermionic quasiparticles in multilayer epitaxial graphene using ultrafast optical differential transmission spectroscopy. We observe DT spectra which are well described by interband transi tions with no electron-hole interaction. Following the initial thermalization and emission of high-energy phonons, the electron cooling is determined by electron-acoustic phonon scattering, found to occur on the time scale of 1 ps for highly doped layers, and 4-11 ps in undoped layers. The spectra also provide strong evidence for the multilayer stucture and doping profile of thermally grown epitaxial graphene on SiC.
241 - Peizhe Tang , Quan Zhou , Gang Xu 2016
The analogues of elementary particles have been extensively searched for in condensed matter systems because of both scientific interests and technological applications. Recently massless Dirac fermions were found to emerge as low energy excitations in the materials named Dirac semimetals. All the currently known Dirac semimetals are nonmagnetic with both time-reversal symmetry $mathcal{T}$ and inversion symmetry $mathcal{P}$. Here we show that Dirac fermions can exist in one type of antiferromagnetic systems, where $mathcal{T}$ and $mathcal{P}$ are broken but their combination $mathcal{PT}$ is respected. We propose orthorhombic antiferromagnet CuMnAs as a candidate, analyze the robustness of the Dirac points with symmetry protections, and demonstrate its distinctive bulk dispersions as well as the corresponding surface states by emph{ab initio} calculations. Our results give a new route towards the realization of Dirac materials, and provide a possible platform to study the interplay of Dirac fermion physics and magnetism.
We synthesized three-dimensional nanoporous graphene films by a chemical vapor deposition method with nanoporous copper as a catalytic substrate. The resulting nanoporous graphene has the same average pore size as the underlying copper substrate. Our surface-enhanced Raman scattering (SERS) investigation indicates that the nanoporosity of graphene significantly improves the SERS efficiency of graphene as a substrate as compared to planar graphene substrates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا