ﻻ يوجد ملخص باللغة العربية
In the last decade we have witnessed a rapid growth in data center systems, requiring new and highly complex networking devices. The need to refresh networking infrastructure whenever new protocols or functions are introduced, and the increasing costs that this entails, are of a concern to all data center providers. New generations of Systems on Chip (SoC), integrating microprocessors and higher bandwidth interfaces, are an emerging solution to this problem. These devices permit entirely new systems and architectures that can obviate the replacement of existing networking devices while enabling seamless functionality change. In this work, we explore open source, RISC based, SoC architectures with high performance networking capabilities. The prototype architectures are implemented on the NetFPGA-SUME platform. Beyond details of the architecture, we also describe the hardware implementation and the porting of operating systems to the platform. The platform can be exploited for the development of practical networking appliances, and we provide use case examples.
Neural Networks (NN) have been proven to be powerful tools to analyze Big Data. However, traditional CPUs cannot achieve the desired performance and/or energy efficiency for NN applications. Therefore, numerous NN accelerators have been used or desig
Multi-tenancy for latency-critical applications leads to re-source interference and unpredictable performance. Core reconfiguration opens up more opportunities for colocation,as it allows the hardware to adjust to the dynamic performance and power ne
One of the key enablers of future wireless communications is constituted by massive multiple-input multiple-output (MIMO) systems, which can improve the spectral efficiency by orders of magnitude. However, in existing massive MIMO systems, convention
We introduce ratatoskr, an open-source framework for in-depth power, performance and area (PPA) analysis in NoCs for 3D-integrated and heterogeneous System-on-Chips (SoCs). It covers all layers of abstraction by providing a NoC hardware implementatio
The current trend for domain-specific architectures (DSAs) has led to renewed interest in research test chips to demonstrate new specialized hardware. Tape-outs also offer huge pedagogical value garnered from real hands-on exposure to the whole syste