ترغب بنشر مسار تعليمي؟ اضغط هنا

NIHAO XIII: Clumpy discs or clumpy light in high redshift galaxies?

261   0   0.0 ( 0 )
 نشر من قبل Tobias Buck
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Tobias Buck




اسأل ChatGPT حول البحث

Many massive star forming disc galaxies in the redshift range 3 to 0.5 are observed to have a clumpy morphology showing giant clumps of size $sim$1 kpc and masses of about $10^7M_{odot}$ to $10^{10} M_{odot}$. The nature and fate of these giant clumps is still under debate. In this work we use 19 high-resolution simulations of disc galaxies from the NIHAO sample to study the formation and the evolution of clumps in the discs of high redshift galaxies. We use mock HST - CANDELS observations created with the radiative transfer code GRASIL-3D to carry out, for the first time, a quantitative comparison of the observed fraction of clumpy galaxies and its evolution with redshift with simulations. We find a good agreement between the observed clumpy fraction and the one of the NIHAO galaxies. We find that dust attenuation can suppress intrinsically bright clumps and enhance less luminous ones. In our galaxy sample we only find clumps in light (u-band) from young stars but not in stellar mass surface density maps. This means that the NIHAO sample does not show clumpy stellar discs but rather a clumpy light distribution originating from clumpy star formation events. The clumps found in the NIHAO sample match observed age/color gradients as a function of distance from the galaxy center but they show no sign of inward migration. Clumps in our simulations disperse on timescales of a about a hundred Myr and their contribution to bulge growth is negligible.



قيم البحث

اقرأ أيضاً

We utilize zoom-in cosmological simulations to study the nature of violent disc instability (VDI) in clumpy galaxies at high redshift, $z=1$--$5$. Our simulated galaxies are not in the ideal state assumed in Toomre instability, of linear fluctuations in an isolated, uniform, rotating disk. There, instability is characterised by a $Q$ parameter below unity, and lower when the disk is thick. Instead, the high-redshift discs are highly perturbed. Over long periods they consist of non-linear perturbations, compact massive clumps and extended structures, with new clumps forming in inter-clump regions. This is while the galaxy is subject to frequent external perturbances. We compute the local, two-component $Q$ parameter for gas and stars, smoothed on a $sim1~{rm kpc}$ scale to capture clumps of $10^{8-9}~{rm M}_odot$. The $Q<1$ regions are confined to collapsed clumps due to the high surface density there, while the inter-clump regions show $Q$ significantly higher than unity. Tracing the clumps back to their relatively smooth Lagrangian patches, we find that $Q$ prior to clump formation typically ranges from unity to a few. This is unlike the expectations from standard Toomre instability. We discuss possible mechanisms for high-$Q$ clump formation, e.g. rapid turbulence decay leading to small clumps that grow by mergers, non-axisymmetric instability, or clump formation induced by non-linear perturbations in the disk. Alternatively, the high-$Q$ non-linear VDI may be stimulated by the external perturbations such as mergers and counter-rotating streams. The high $Q$ may represent excessive compressive modes of turbulence, possibly induced by tidal interactions.
Massive stellar clumps in high redshift galaxies interact and migrate to the center to form a bulge and exponential disk in <1 Gyr. Here we consider the fate of intermediate mass black holes (BHs) that might form by massive-star coalescence in the de nse young clusters of these disk clumps. We find that the BHs move inward with the clumps and reach the inner few hundred parsecs in only a few orbit times. There they could merge into a supermassive BH by dynamical friction. The ratio of BH mass to stellar mass in the disk clumps is approximately preserved in the final ratio of BH to bulge mass. Because this ratio for individual clusters has been estimated to be ~10^{-3}, the observed BH-to-bulge mass ratio results. We also obtain a relation between BH mass and bulge velocity dispersion that is compatible with observations of present-day galaxies.
A scenario for the formation of the bi-modality in the chemical space [$alpha$/Fe] vs [Fe/H] of the Milky Way was recently proposed in which $alpha$-enhanced stars are produced early and quickly in clumps. Besides accelerating the enrichment of the m edium with $alpha$-elements, these clumps scatter the old stars, converting in-plane to vertical motion, forming a geometric thick disc. In this paper, by means of a detailed analysis of the data from smooth particle hydrodynamical simulations, we investigate the geometric properties (in particular of the chemical thick disc) produced in this scenario. For mono-age populations we show that the surface radial density profiles of high-[$alpha$/Fe] stars are well described by single exponentials, while that of low-[$alpha$/Fe] stars require broken exponentials. This break is sharp for young populations and broadens for older ones. The position of the break does not depend significantly on age. The vertical density profiles of mono-age populations are characterized by single exponentials, which flare significantly for low-[$alpha$/Fe] stars but only weakly (or not at all) for high-[$alpha$/Fe] stars. For low-[$alpha$/Fe] stars, the flaring level decreases with age, while for high-[$alpha$/Fe] stars it weakly increases with age (although with large uncertainties). All these properties are in agreement with observational results recently reported for the Milky Way, making this a plausible scenario for the formation of the Galactic thick disc.
We measure the stellar specific angular momentum jstar=Jstar/Mstar in four nearby (z~0.1) disk galaxies that have stellar masses Mstar near the break M* of the galaxy mass function, but look like typical star-forming disks at z~2 in terms of their lo w stability (Q~1), clumpiness, high ionized gas dispersion (40-50 km/s), high molecular gas fraction (20-30%) and rapid star formation (~20 Msun/yr). Combining high-resolution (Keck-OSIRIS) and large-radius (Gemini-GMOS) spectroscopic maps, only available at low z, we discover that these targets have about three times less stellar angular momentum than typical local spiral galaxies of equal stellar mass and bulge fraction. Theoretical considerations show that this deficiency in angular momentum is the main cause of their low stability, while the high gas fraction plays a complementary role. Interestingly, the low jstar values of our targets are similar to those expected in the M*-population at higher z from the approximate theoretical scaling jstar~(1+z)^(-1/2) at fixed Mstar. This suggests that a change in angular momentum, driven by cosmic expansion, is the main cause for the remarkable difference between clumpy M*-disks at high z (which likely evolve into early-type galaxies) and mass-matched local spirals.
Although giant clumps of stars are crucial to galaxy formation and evolution, the most basic demographics of clumps are still uncertain, mainly because the definition of clumps has not been thoroughly discussed. In this paper, we study the basic demo graphics of clumps in star-forming galaxies (SFGs) at 0.5<z<3, using our proposed physical definition that UV-bright clumps are discrete star-forming regions that individually contribute more than 8% of the rest-frame UV light of their galaxies. Clumps defined this way are significantly brighter than the HII regions of nearby large spiral galaxies, either individually or blended, when physical spatial resolution and cosmological dimming are considered. Under this definition, we measure the fraction of SFGs that contain at least one off-center clump (Fclumpy) and the contributions of clumps to the rest-frame UV light and star formation rate of SFGs in the CANDELS/GOODS-S and UDS fields, where our mass-complete sample consists of 3239 galaxies with axial ratio q>0.5. The redshift evolution of Fclumpy changes with the stellar mass (M*) of the galaxies. Low-mass (log(M*/Msun)<9.8) galaxies keep an almost constant Fclumpy of about 60% from z~3.0 to z~0.5. Intermediate-mass and massive galaxies drop their Fclumpy from 55% at z~3.0 to 40% and 15%, respectively, at z~0.5. We find that (1) the trend of disk stabilization predicted by violent disk instability matches the Fclumpy trend of massive galaxies; (2) minor mergers are a viable explanation of the Fclumpy trend of intermediate-mass galaxies at z<1.5, given a realistic observability timescale; and (3) major mergers are unlikely responsible for the Fclumpy trend in all masses at z<1.5. The clump contribution to the rest-frame UV light of SFGs shows a broad peak around galaxies with log(M*/Msun)~10.5 at all redshifts, possibly linked to the molecular gas fraction of the galaxies. (Abridged)
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا