ﻻ يوجد ملخص باللغة العربية
In this paper, we propose a framework for solving a single-agent task by using multiple agents, each focusing on different aspects of the task. This approach has two main advantages: 1) it allows for training specialized agents on different parts of the task, and 2) it provides a new way to transfer knowledge, by transferring trained agents. Our framework generalizes the traditional hierarchical decomposition, in which, at any moment in time, a single agent has control until it has solved its particular subtask. We illustrate our framework with empirical experiments on two domains.
Learning effective policies for sparse objectives is a key challenge in Deep Reinforcement Learning (RL). A common approach is to design task-related dense rewards to improve task learnability. While such rewards are easily interpreted, they rely on
Maximum Entropy (MaxEnt) reinforcement learning is a powerful learning paradigm which seeks to maximize return under entropy regularization. However, action entropy does not necessarily coincide with state entropy, e.g., when multiple actions produce
Much of the current work on reinforcement learning studies episodic settings, where the agent is reset between trials to an initial state distribution, often with well-shaped reward functions. Non-episodic settings, where the agent must learn through
In vision-based reinforcement learning (RL) tasks, it is prevalent to assign the auxiliary task with a surrogate self-supervised loss so as to obtain more semantic representations and improve sample efficiency. However, abundant information in self-s
Reinforcement Learning (RL) is a key technique to address sequential decision-making problems and is crucial to realize advanced artificial intelligence. Recent years have witnessed remarkable progress in RL by virtue of the fast development of deep