ترغب بنشر مسار تعليمي؟ اضغط هنا

Ba2NiOsO6: A Dirac-Mott insulator with ferromagnetism near 100 K

129   0   0.0 ( 0 )
 نشر من قبل Hai Feng
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The ferromagnetic semiconductor Ba2NiOsO6 (Tmag ~100 K) was synthesized at 6 GPa and 1500 {deg}C. It crystallizes into a double perovskite structure [Fm-3m; a = 8.0428(1) {AA}], where the Ni2+ and Os6+ ions are perfectly ordered at the perovskite B-site. We show that the spin-orbit coupling of Os6+ plays an essential role in opening the charge gap. The magnetic state was investigated by density functional theory calculations and powder neutron diffraction. The latter revealed a collinear ferromagnetic order in a >21 kOe magnetic field at 5 K. The ferromagnetic gapped state is fundamentally different from that of known dilute magnetic semiconductors such as (Ga,Mn)As and (Cd,Mn)Te (Tmag < 180 K), the spin-gapless semiconductor Mn2CoAl (Tmag ~720 K), and the ferromagnetic insulators EuO (Tmag ~70 K) and Bi3Cr3O11 (Tmag ~220 K). It is also qualitatively different from known ferrimagnetic insulator/semiconductors, which are characterized by an antiparallel spin arrangement. Our finding of the ferromagnetic semiconductivity of Ba2NiOsO6 should increase interest in the platinum group oxides, because this new class of materials should be useful in the development of spintronic, quantum magnetic, and related devices.



قيم البحث

اقرأ أيضاً

Results are presented of single crystal structural, thermodynamic, and reflectivity measurements of the double-perovskite Ba2NaOsO6. These characterize the material as a 5d^1 ferromagnetic Mott insulator with an ordered moment of ~0.2 Bohr magnetons per formula unit and TC = 6.8(3) K. The magnetic entropy associated with this phase transition is close to Rln2, indicating that the quartet groundstate anticipated from consideration of the crystal structure is split, consistent with a scenario in which the ferromagnetism is associated with orbital ordering.
We discuss photogenerated midgap states of a one-dimensional (1D) dimerized Mott insulator, potassium-tetracyanoquinodimethane (K-TCNQ). Two types of phonon modes are taken into account: intermolecular and intramolecular vibrations. We treat these ph onon modes adiabatically and analyze a theoretical model by using the density-matrix renormalization group (DMRG). Our numerical results demonstrate that the intermolecular lattice distortion is necessary to reproduce the photoinduced midgap absorption in K-TCNQ. We find two types of midgap states. One is a usual polaronic state characterized by a localized elementary excitation. The other is superposition of two types of excitations, a doped-carrier state and a triplet-dimer state, which can be generally observed in 1D dimerized Mott insulators, not limited to K-TCNQ.
121 - Jinwon Lee , Kyung-Hwan Jin , 2021
In an electronic system with various interactions intertwined, revealing the origin of its many-body ground state is challenging and a direct experimental way to verify the correlated nature of an insulator has been lacking. Here we demonstrate a way to unambiguously distinguish a paradigmatic correlated insulator, a Mott insulator, from a trivial band insulator based on their distinct chemical behavior for a surface adsorbate using 1T-TaS2, which has been debated between a spin-frustrated Mott insulator or a spin-singlet trivial insulator. We start from the observation of different sizes of spectral gaps on different surface terminations and show that potassium adatoms on these two surface layers behave in totally different ways. This can be straightforwardly understood from distinct properties of a Mott and a band insulators due to the fundamental difference of a half and a full-filled orbital involved respectively. This work not only solves an outstanding problem in this particularly interesting material but also provides a simple touchstone to identify the correlated ground state of electrons experimentally.
We develop a real space theory of the voltage bias driven transition from a Mott insulator to a correlated metal. Within our Keldysh mean field approach the problem reduces to a self-consistency scheme for the charge and spin profiles in this open sy stem. We solve this problem for a two dimensional antiferromagnetic Mott insulator at zero temperature. The charge and spin magnitude is uniform over the system at zero bias, but a bias $V$ leads to spatial modulation over a lengthscale $xi(V)$ near the edges. $xi(V)$ grows rapidly and becomes comparable to system size as $V$ increases towards a threshold scale $V_c$. The linear response conductance of the insulator is zero with the current being exponentially small for $V ll V_c$. The current increases rapidly as $V rightarrow V_c$. Beyond $V_c$, we observe an inhomogeneous low moment antiferromagnetic metal, and at even larger bias a current saturated paramagnetic metal. We suggest an approximate scheme for the spectral features of this nonequilibrium system.
We study the effects of hole doping on one-dimensional Mott insulators with orbital degrees of freedom. We describe the system in terms of a generalized t-J model. At a specific point in parameter space the model becomes integrable in analogy to the one-band supersymmetric t-J model. We use the Bethe ansatz to derive a set of nonlinear integral equations which allow us to study the thermodynamics exactly. Moving away from this special point in parameter space we use the density-matrix renormalization group applied to transfer matrices to study the evolution of various phases of the undoped system with doping and temperature. Finally, we study a one-dimensional version of a realistic model for cubic titanates which includes the anisotropy of the orbital sector due to Hunds coupling. We find a transition from a phase with antiferromagnetically correlated spins to a phase where the spins are fully ferromagnetically polarized, a strong tendency towards phase separation at large Hunds coupling, as well as the possibility of an instability towards triplet superconductivity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا