ترغب بنشر مسار تعليمي؟ اضغط هنا

A Compositional Framework for Preference-Aware Agents

92   0   0.0 ( 0 )
 نشر من قبل EPTCS
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

A formal description of a Cyber-Physical system should include a rigorous specification of the computational and physical components involved, as well as their interaction. Such a description, thus, lends itself to a compositional model where every module in the model specifies the behavior of a (computational or physical) component or the interaction between different components. We propose a framework based on Soft Constraint Automata that facilitates the component-wise description of such systems and includes the tools necessary to compose subsystems in a meaningful way, to yield a description of the entire system. Most importantly, Soft Constraint Automata allow the description and composition of components preferences as well as environmental constraints in a uniform fashion. We illustrate the utility of our framework using a detailed description of a patrolling robot, while highlighting methods of composition as well as possible techniques to employ them.



قيم البحث

اقرأ أيضاً

Predicting future sensory states is crucial for learning agents such as robots, drones, and autonomous vehicles. In this paper, we couple multiple sensory modalities with exploratory actions and propose a predictive neural network architecture to add ress this problem. Most existing approaches rely on large, manually annotated datasets, or only use visual data as a single modality. In contrast, the unsupervised method presented here uses multi-modal perceptions for predicting future visual frames. As a result, the proposed model is more comprehensive and can better capture the spatio-temporal dynamics of the environment, leading to more accurate visual frame prediction. The other novelty of our framework is the use of sub-networks dedicated to anticipating future haptic, audio, and tactile signals. The framework was tested and validated with a dataset containing 4 sensory modalities (vision, haptic, audio, and tactile) on a humanoid robot performing 9 behaviors multiple times on a large set of objects. While the visual information is the dominant modality, utilizing the additional non-visual modalities improves the accuracy of predictions.
Model checking probabilistic CTL properties of Markov decision processes with convex uncertainties has been recently investigated by Puggelli et al. Such model checking algorithms typically suffer from the state space explosion. In this paper, we add ress probabilistic bisimulation to reduce the size of such an MDP while preserving the probabilistic CTL properties it satisfies. In particular, we discuss the key ingredients to build up the operations of parallel composition for composing interval MDP components at run-time. More precisely, we investigate how the parallel composition operator for interval MDPs can be defined so as to arrive at a congruence closure. As a result, we show that probabilistic bisimulation for interval MDPs is congruence with respect to two facets of parallelism, namely synchronous product and interleaving.
This paper describes an implementation of a bot assistant in Minecraft, and the tools and platform allowing players to interact with the bot and to record those interactions. The purpose of building such an assistant is to facilitate the study of age nts that can complete tasks specified by dialogue, and eventually, to learn from dialogue interactions.
This paper comprehensively studies a content-centric mobile network based on a preference learning framework, where each mobile user is equipped with a finite-size cache. We consider a practical scenario where each user requests a content file accord ing to its own preferences, which is motivated by the existence of heterogeneity in file preferences among different users. Under our model, we consider a single-hop-based device-to-device (D2D) content delivery protocol and characterize the average hit ratio for the following two file preference cases: the personalized file preferences and the common file preferences. By assuming that the model parameters such as user activity levels, user file preferences, and file popularity are unknown and thus need to be inferred, we present a collaborative filtering (CF)-based approach to learn these parameters. Then, we reformulate the hit ratio maximization problems into a submodular function maximization and propose two computationally efficient algorithms including a greedy approach to efficiently solve the cache allocation problems. We analyze the computational complexity of each algorithm. Moreover, we analyze the corresponding level of the approximation that our greedy algorithm can achieve compared to the optimal solution. Using a real-world dataset, we demonstrate that the proposed framework employing the personalized file preferences brings substantial gains over its counterpart for various system parameters.
The standard semantics of multi-agent epistemic logic $S5$ is based on Kripke models whose accessibility relations are reflexive, symmetric and transitive. This one dimensional structure contains implicit higher-dimensional information beyond pairwis e interactions, that has been formalized as pure simplicial models in previous work from the authors. Here we extend the theory to encompass all simplicial models - including the ones that are not pure. The corresponding Kripke models are those where the accessibility relation is symmetric and transitive, but might not be reflexive. This yields the epistemic logic $KB4$ which can reason about situations where some of the agents may die.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا