ﻻ يوجد ملخص باللغة العربية
We use a pair of high resolution N-body simulations implementing two dark matter models, namely the standard cold dark matter (CDM) cosmogony and a warm dark matter (WDM) alternative where the dark matter particle is a 1.5keV thermal relic. We combine these simulations with the GALFORM semi-analytical galaxy formation model in order to explore differences between the resulting galaxy populations. We use GALFORM model variants for CDM and WDM that result in the same z=0 galaxy stellar mass function by construction. We find that most of the studied galaxy properties have the same values in these two models, indicating that both dark matter scenarios match current observational data equally well. Even in under-dense regions, where discrepancies in structure formation between CDM and WDM are expected to be most pronounced, the galaxy properties are only slightly different. The only significant difference in the local universe we find is in the galaxy populations of Local Volumes, regions of radius 1 to 8Mpc around simulated Milky Way analogues. In such regions our WDM model provides a better match to observed local galaxy number counts and is five times more likely than the CDM model to predict sub-regions within them that are as empty as the observed Local Void. Thus, a highly complete census of the Local Volume and future surveys of void regions could provide constraints on the nature of dark matter.
The nature of the dark matter can affect the collapse time of dark matter haloes, and can therefore be imprinted in observables such as the stellar population ages and star formation histories of dwarf galaxies. In this paper we use high resolution h
By means of N-body+Hydrodynamic zoom-in simulations we study the evolution of the inner dark matter and stellar mass distributions of central dwarf galaxies formed in halos of virial masses Mv=2-3x10^10 Msun at z=0, both in a WDM and CDM cosmology. T
We study the impact of a warm dark matter (WDM) cosmology on dwarf galaxy formation through a suite of cosmological hydrodynamical zoom-in simulations of $M_{rm halo} approx10^{10},M_{odot}$ dark matter halos as part of the Feedback in Realistic Envi
We analyze the total and baryonic acceleration profiles of a set of well-resolved galaxies identified in the EAGLE suite of hydrodynamic simulations. Our runs start from the same initial conditions but adopt different prescriptions for unresolved ste
We perform a series of controlled N-body simulations to study realizations of the recently discovered Antlia 2 galaxy in cold dark matter (CDM) and self-interacting dark matter (SIDM) scenarios. Our simulations contain six benchmark models, where we