ﻻ يوجد ملخص باللغة العربية
Photogenerated excitonic ensembles confined in coupled GaAs quantum wells are probed by a complementary approach of emission spectroscopy and resonant inelastic light scattering. Lateral electrostatic trap geometries are used to create dense systems of spatially indirect excitons and excess holes with similar densities in the order of 10$^{11}$ cm$^{-2}$. Inelastic light scattering spectra reveal a very sharp low-lying collective mode that is identified at an energy of 0.44 meV and a FWHM of only ~50 $mu$eV. This mode is interpreted as a plasmon excitation of the excess hole system coupled to the photogenerated indirect excitons. The emission energy of the indirect excitons shifts under the application of a perpendicular applied electric field with the quantum-confined Stark effect unperturbed from the presence of free charge carriers. Our results illustrate the potential of studying low-lying collective excitations in photogenerated exciton systems to explore the many-body phase diagram, related phase transitions, and interaction physics.
We present a general method for obtaining the exact static solutions and collective excitation frequencies of a trapped Bose-Einstein condensate (BEC) with dipolar atomic interactions in the Thomas-Fermi regime. The method incorporates analytic expre
We study the spectrum of elementary excitations of a dipolar Bose gas in a three-dimensional anisotropic trap across the superfluid-supersolid phase transition. Theoretically, we show that, when entering the supersolid phase, two distinct excitation
We investigate the transport of dipolar indirect excitons along the growth plane of polar (Al,Ga)N/GaN quantum well structures by means of spatially- and time-resolved photoluminescence spectroscopy. The transport in these strongly disordered quantum
Atomistic van der Waals heterostacks are ideal systems for high-temperature exciton condensation because of large exciton binding energies and long lifetimes. Charge transport and electron energy-loss spectroscopy showed first evidence of excitonic m
In ultracold atoms settings, inelastic light scattering is a preeminent technique to reveal static and dynamic properties at nonzero momentum. In this work, we investigate an array of one-dimensional trapped Bose gases, by measuring both the energy a