ﻻ يوجد ملخص باللغة العربية
Recent theoretical studies of topologically nontrivial electronic states in Kondo insulators have pointed to the importance of spin-orbit coupling (SOC) for stabilizing these states. However, systematic experimental studies that tune the SOC parameter $lambda_{rm{SOC}}$ in Kondo insulators remain elusive. The main reason is that variations of (chemical) pressure or doping strongly influence the Kondo coupling $J_{text{K}}$ and the chemical potential $mu$ -- both essential parameters determining the ground state of the material -- and thus possible $lambda_{rm{SOC}}$ tuning effects have remained unnoticed. Here we present the successful growth of the substitution series Ce$_3$Bi$_4$(Pt$_{1-x}$Pd$_x$)$_3$ ($0 le x le 1$) of the archetypal (noncentrosymmetric) Kondo insulator Ce$_3$Bi$_4$Pt$_3$. The Pt-Pd substitution is isostructural, isoelectronic, and isosize, and therefore likely to leave $J_{text{K}}$ and $mu$ essentially unchanged. By contrast, the large mass difference between the $5d$ element Pt and the $4d$ element Pd leads to a large difference in $lambda_{rm{SOC}}$, which thus is the dominating tuning parameter in the series. Surprisingly, with increasing $x$ (decreasing $lambda_{rm{SOC}}$), we observe a Kondo insulator to semimetal transition, demonstrating an unprecedented drastic influence of the SOC. The fully substituted end compound Ce$_3$Bi$_4$Pd$_3$ shows thermodynamic signatures of a recently predicted Weyl-Kondo semimetal.
Kondo insulators are predicted to undergo an insulator-to-metal transition under applied magnetic field, yet the extremely high fields required to date have prohibited a comprehensive investigation of the nature of this transition. Here we show that
There is considerable interest in the intersection of correlations and topology, especially in metallic systems. Among the outstanding questions are how strong correlations drive novel topological states and whether such states can be readily control
An Anderson model for a magnetic impurity in a two-dimensional electron gas with bulk Rashba spin-orbit interaction is solved using the numerical renormalization group under two different experimental scenarios. For a fixed Fermi energy, the Kondo te
SrIrO$_3$ crystallizes in a monoclinic structure of distorted hexagonal perovskite at ambient pressure. The transport measurements show that the monoclinic SrIrO$_3$ is a low-carrier density semimetal, as in the orthorhombic perovskite polymorph. The
The perovskite SrIrO3 is an exotic narrow-band metal owing to a confluence of the strengths of the spin-orbit coupling (SOC) and the electron-electron correlations. It has been proposed that topological and magnetic insulating phases can be achieved