ﻻ يوجد ملخص باللغة العربية
We perform a linearized local stability analysis for short-wavelength perturbations of a circular Couette flow with the radial temperature gradient. Axisymmetric and nonaxisymmetric perturbations are considered and both the thermal diffusivity and the kinematic viscosity of the fluid are taken into account. The effect of the asymmetry of the heating both on the centrifugally unstable flows and on the onset of the instabilities of the centrifugally stable flows, including the flow with the Keplerian shear profile, is thoroughly investigated. It is found that the inward temperature gradient destabilizes the Rayleigh stable flow either via Hopf bifurcation if the liquid is a very good heat conductor or via steady state bifurcation if viscosity prevails over the thermal conductance.
We study the convective and absolute forms of azimuthal magnetorotational instability (AMRI) in a Taylor-Couette (TC) flow with an imposed azimuthal magnetic field. We show that the domain of the convective AMRI is wider than that of the absolute AMR
Numerical simulation of Electroconvective vortices behavior in the presence of Couette flow between two infinitely long electrodes is investigated. The two-relaxation-time Lattice Boltzmann Method with fast Poisson solver solves for the spatiotempora
We perform a three-dimensional, short-wavelength stability analysis on the numerically simulated two-dimensional flow past a circular cylinder for Reynolds numbers in the range $50le Rele300$; here, $Re = U_{infty}D/ u$ with $U_infty$, $D$ and $ u$ b
Recent studies have brought into question the view that at sufficiently high Reynolds number turbulence is an asymptotic state. We present the first direct observation of the decay of turbulent states in Taylor-Couette flow with lifetimes spanning fi
Plane Couette flow transitions to turbulence for Re~325 even though the laminar solution with a linear profile is linearly stable for all Re (Reynolds number). One starting point for understanding this subcritical transition is the existence of invar