ﻻ يوجد ملخص باللغة العربية
GAIA leads us to step into a new era with a high astrometry precision of 10 uas. Under such a precision, astrometry will play important roles in detecting and characterizing exoplanets. Specially, we can identify planet pairs in mean motion resonances(MMRs) via astrometry, which constrains the formation and evolution of planetary systems. In accordance with observations, we consider two Jupiters or two super-Earths systems in 1:2, 2:3 and 3:4 MMRs. Our simulations show the false alarm probabilities(FAPs) of a third planet are extremely small while the real two planets can be good fitted with signal-to-noise ratio(SNR)> 3. The probability of reconstructing a resonant system is related with the eccentricities and resonance intensity. Generally, when SNR >= 10, if eccentricities of both planets are larger than 0.01 and the resonance is quite strong, the probabilities to reconstruct the planet pair in MMRs >= 80%. Jupiter pairs in MMRs are reconstructed more easily than super-Earth pairs with similar SNR when we consider the dynamical stability. FAPs are also calculated when we detect planet pairs in or near MMRs. FAPs for 1:2 MMR are largest, i.e., FAPs > 15% when SNR <= 10. Extrapolating from the Kepler planet pairs near MMRs and assuming SNR to be 3, we will discover and reconstruct a few tens of Jupiter pairs and hundreds of super-Earth pairs in 2:3 and 1:2 MMRs within 30 pc. We also compare the differences between even and uneven data cadence and find that planets are better measured with more uniform phase coverage.
The identification of mean motion resonances in exoplanetary systems or in the Solar System might be cumbersome when several planets and large number of smaller bodies are to be considered. Based on the geometrical meaning of the resonance variable,
Recent works on three-planet mean motion resonances (MMRs) have highlighted their importance for understanding the details of the dynamics of planet formation and evolution. While the dynamics of two-planet MMRs are well understood and approximately
This paper focuses on two-planet systems in a first-order $(q+1):q$ mean motion resonance and undergoing type-I migration in a disc. We present a detailed analysis of the resonance valid for any value of $q$. Expressions for the equilibrium eccentric
We provide a scheme to correct asteroid astrometric observations for star catalog systematic errors due to inaccurate star positions and proper motions. As reference we select the most accurate stars in the PPMXL catalog, i.e., those based on 2MASS a
As the discoveries of more minor bodies in retrograde resonances with giant planets, such as 2015 BZ509 and 2006 RJ2, our curiosity about the Kozai-Lidov dynamics inside the retrograde resonance has been sparked. In this study, we focus on the 3D ret