ترغب بنشر مسار تعليمي؟ اضغط هنا

On Jacobian group and complexity of the generalized Petersen graph GP(n,k) through Chebyshev polynomials

125   0   0.0 ( 0 )
 نشر من قبل Ilya Mednykh
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In the present paper we find a simple algorithm for counting Jacobian group of the generalized Petersen graph GP(n,k). Also, we obtain a closed formula for the number of spanning trees of this graph in terms of Chebyshev polynomials.



قيم البحث

اقرأ أيضاً

145 - A. Goodall , M. Hermann , T. Kotek 2017
J. Makowsky and B. Zilber (2004) showed that many variations of graph colorings, called CP-colorings in the sequel, give rise to graph polynomials. This is true in particular for harmonious colorings, convex colorings, mcc_t-colorings, and rainbow co lorings, and many more. N. Linial (1986) showed that the chromatic polynomial $chi(G;X)$ is #P-hard to evaluate for all but three values X=0,1,2, where evaluation is in P. This dichotomy includes evaluation at real or complex values, and has the further property that the set of points for which evaluation is in P is finite. We investigate how the complexity of evaluating univariate graph polynomials that arise from CP-colorings varies for different evaluation points. We show that for some CP-colorings (harmonious, convex) the complexity of evaluation follows a similar pattern to the chromatic polynomial. However, in other cases (proper edge colorings, mcc_t-colorings, H-free colorings) we could only obtain a dichotomy for evaluations at non-negative integer points. We also discuss some CP-colorings where we only have very partial results.
We show that the cop number of every generalized Petersen graph is at most 4. The strategy is to play a modified game of cops and robbers on an infinite cyclic covering space where the objective is to capture the robber or force the robber towards an end of the infinite graph. We prove that finite isometric subtrees are 1-guardable and apply this to determine the exact cop number of some families of generalized Petersen graphs. We also extend these ideas to prove that the cop number of any connected I-graph is at most 5.
A word $sigma=sigma_1...sigma_n$ over the alphabet $[k]={1,2,...,k}$ is said to be {em smooth} if there are no two adjacent letters with difference greater than 1. A word $sigma$ is said to be {em smooth cyclic} if it is a smooth word and in addition satisfies $|sigma_n-sigma_1|le 1$. We find the explicit generating functions for the number of smooth words and cyclic smooth words in $[k]^n$, in terms of {it Chebyshev polynomials of the second kind}. Additionally, we find explicit formula for the numbers themselves, as trigonometric sums. These lead to immediate asymptotic corollaries. We also enumerate smooth necklaces, which are cyclic smooth words that are not equivalent up to rotation.
160 - Toufik Mansour , Yidong Sun 2008
A {em k-generalized Dyck path} of length $n$ is a lattice path from $(0,0)$ to $(n,0)$ in the plane integer lattice $mathbb{Z}timesmathbb{Z}$ consisting of horizontal-steps $(k, 0)$ for a given integer $kgeq 0$, up-steps $(1,1)$, and down-steps $(1,- 1)$, which never passes below the x-axis. The present paper studies three kinds of statistics on $k$-generalized Dyck paths: number of $u$-segments, number of internal $u$-segments and number of $(u,h)$-segments. The Lagrange inversion formula is used to represent the generating function for the number of $k$-generalized Dyck paths according to the statistics as a sum of the partial Bell polynomials or the potential polynomials. Many important special cases are considered leading to several surprising observations. Moreover, enumeration results related to $u$-segments and $(u,h)$-segments are also established, which produce many new combinatorial identities, and specially, two new expressions for Catalan numbers.
A class of simple graphs such as ${cal G}$ is said to be {it odd-girth-closed} if for any positive integer $g$ there exists a graph $G in {cal G}$ such that the odd-girth of $G$ is greater than or equal to $g$. An odd-girth-closed class of graphs ${c al G}$ is said to be {it odd-pentagonal} if there exists a positive integer $g^*$ depending on ${cal G}$ such that any graph $G in {cal G}$ whose odd-girth is greater than $g^*$ admits a homomorphism to the five cycle (i.e. is $C_{_{5}}$-colorable). In this article, we show that finding the odd girth of generalized Petersen graphs can be transformed to an integer programming problem, and using this we explicitly compute the odd girth of such graphs, showing that the class is odd-girth-closed. Also, motivated by showing that the class of generalized Petersen graphs is odd-pentagonal, we study the circular chromatic number of such graphs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا