ترغب بنشر مسار تعليمي؟ اضغط هنا

A Universal Multi-Hierarchy Figure-of-Merit for On-Chip Computing and Communications

401   0   0.0 ( 0 )
 نشر من قبل Shuai Sun
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Continuing demands for increased compute efficiency and communication bandwidth have led to the development of novel interconnect technologies with the potential to outperform conventional electrical interconnects. With a plurality of interconnect technologies to include electronics, photonics, plasmonics, and hybrids thereof, the simple approach of counting on-chip devices to capture performance is insufficient. While some efforts have been made to capture the performance evolution more accurately, they eventually deviate from the observed development pace. Thus, a holistic figure of merit (FOM) is needed to adequately compare these recent technology paradigms. Here we introduce the Capability-to-Latency-Energy-Amount-Resistance (CLEAR) FOM derived from device and link performance criteria of both active optoelectronic devices and passive components alike. As such CLEAR incorporates communication delay, energy efficiency, on-chip scaling and economic cost. We show that CLEAR accurately describes compute development including most recent machines. Since this FOM is derived bottom-up, we demonstrate remarkable adaptability to applications ranging from device-level to network and system-level. Applying CLEAR to benchmark device, link, and network performance against fundamental physical compute and communication limits shows that photonics is competitive even for fractions of the die-size, thus making a case for on-chip optical interconnects.



قيم البحث

اقرأ أيضاً

Massive multiple-input multiple-output (MIMO) systems are considered as one of the leading technologies employed in the next generations of wireless communication networks (5G), which promise to provide higher spectral efficiency, lower latency, and more reliability. Due to the massive number of devices served by the base stations (BS) equipped with large antenna arrays, massive-MIMO systems need to perform high-dimensional signal processing in a considerably short amount of time. The computational complexity of such data processing, while satisfying the energy and latency requirements, is beyond the capabilities of the conventional widely-used digital electronics-based computing, i.e., Field-Programmable Gate Arrays (FPGAs) and Application-Specific Integrated Circuits (ASICs). In this paper, the speed and lossless propagation of light is exploited to introduce a photonic computing approach that addresses the high computational complexity required by massive-MIMO systems. The proposed computing approach is based on photonic implementation of multiply and accumulate (MAC) operation achieved by broadcast-and-weight (B&W) architecture. The B&W protocol is limited to real and positive values to perform MAC operations. In this work, preprocessing steps are developed to enable the proposed photonic computing architecture to accept any arbitrary values as the input. This is a requirement for wireless communication systems that typically deal with complex values. Numerical analysis shows that the performance of the wireless communication system is not degraded by the proposed photonic computing architecture, while it provides significant improvements in time and energy efficiency for massive-MIMO systems as compared to the most powerful Graphics Processing Units (GPUs).
175 - Junsen Xiang , Sile Hu , Meng Lyu 2019
Thermoelectric (TE) conversion in conducting materials is of eminent importance for providing renewable energy and solid-state cooling. Although traditionally, the Seebeck effect plays a key role for the TE figure of merit zST, it encounters fundamen tal constraints hindering its conversion efficiency. Most notably, there are the charge compensation of electrons and holes that diminishes this effect, and the intertwinement of the corresponding electrical and thermal conductivities through the Wiedemann-Franz (WF) law which makes their independent optimization in zST impossible. Here, we demonstrate that in the Dirac semimetal Cd3As2 the Nernst effect, i.e., the transverse counterpart of the Seebeck effect, can generate a large TE figure of merit zNT. At room temperature, zNT = 0.5 in a small field of 2 T; it significantly surmounts its longitudinal counterpart zST for any field and further increases upon warming. A large Nernst effect is generically expected in topological semimetals, benefiting from both the bipolar transport of compensated electrons and holes and their high mobilities. In this case, heat and charge transport are orthogonal, i.e., not intertwined by the WF law anymore. More importantly, further optimization of zNT by tuning the Fermi level to the Dirac node can be anticipated due to not only the enhanced bipolar transport, but also the anomalous Nernst effect arising from a pronounced Berry curvature. A combination of the former topologically trivial and the latter nontrivial advantages promises to open a new avenue towards high-efficient transverse thermoelectricity.
To constrain cosmological parameters, one often makes a joint analysis with different combinations of observational data sets. In this paper we take the figure of merit (FoM) for Dark Energy Task Force fiducial model (CPL model) to estimate goodness of different combinations of data sets, which include 11 widely-used observational data sets (Type Ia Supernovae, Observational Hubble Parameter, Baryon Acoustic Oscillation, Cosmic Microwave Background, X-ray Cluster Baryon Mass Fraction, and Gamma-Ray Bursts). We analyze different combinations and make a comparison for two types of combination based on two types of basic combinations, which are often adopted in the literatures. We find two sets of combinations, which have strong ability to constrain the dark energy parameters, one has the largest FoM, the other contains less observational data with a relative large FoM and a simple fitting procedure.
We consider the thermoelectric response of chaotic or disordered quantum dots in the limit of phase-coherent transport, statistically described by random matrix theory. We calculate the full distribution of the thermoelectric coefficients (Seebeck $S $ and Peltier $Pi$), and the thermoelectric figure of merit $ZT$, for large open dots at arbitrary temperature and external magnetic field, when the number of modes in the left and right leads ($N_{rm L}$ and $N_{rm R}$) are large. Our results show that the thermoelectric coefficients and $ZT$ are maximal when the temperature is half the Thouless energy, and the magnetic field is negligible. They remain small, even at their maximum, but they exhibit a type of universality at all temperatures, in which they do not depend on the asymmetry between the left and right leads $(N_{rm L}-N_{rm R})$, even though they depend on $(N_{rm L}+N_{rm R})$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا