ﻻ يوجد ملخص باللغة العربية
The 3SUM problem asks if an input $n$-set of real numbers contains a triple whose sum is zero. We consider the 3POL problem, a natural generalization of 3SUM where we replace the sum function by a constant-degree polynomial in three variables. The motivations are threefold. Raz, Sharir, and de Zeeuw gave a $O(n^{11/6})$ upper bound on the number of solutions of trivariate polynomial equations when the solutions are taken from the cartesian product of three $n$-sets of real numbers. We give algorithms for the corresponding problem of counting such solutions. Gro nlund and Pettie recently designed subquadratic algorithms for 3SUM. We generalize their results to 3POL. Finally, we shed light on the General Position Testing (GPT) problem: Given $n$ points in the plane, do three of them lie on a line?, a key problem in computational geometry. We prove that there exist bounded-degree algebraic decision trees of depth $O(n^{frac{12}{7}+varepsilon})$ that solve 3POL, and that 3POL can be solved in $O(n^2 {(log log n)}^frac{3}{2} / {(log n)}^frac{1}{2})$ time in the real-RAM model. Among the possible applications of those results, we show how to solve GPT in subquadratic time when the input points lie on $o({(log n)}^frac{1}{6}/{(log log n)}^frac{1}{2})$ constant-degree polynomial curves. This constitutes a first step towards closing the major open question of whether GPT can be solved in subquadratic time. To obtain these results, we generalize important tools --- such as batch range searching and dominance reporting --- to a polynomial setting. We expect these new tools to be useful in other applications.
We present subquadratic algorithms in the algebraic decision-tree model for several textsc{3Sum}-hard geometric problems, all of which can be reduced to the following question: Given two sets $A$, $B$, each consisting of $n$ pairwise disjoint segment
Submodular function minimization (SFM) is a fundamental discrete optimization problem which generalizes many well known problems, has applications in various fields, and can be solved in polynomial time. Owing to applications in computer vision and m
In the 3SUM-Indexing problem the goal is to preprocess two lists of elements from $U$, $A=(a_1,a_2,ldots,a_n)$ and $B=(b_1,b_2,...,b_n)$, such that given an element $cin U$ one can quickly determine whether there exists a pair $(a,b)in A times B$ whe
Quantum computers can execute algorithms that dramatically outperform classical computation. As the best-known example, Shor discovered an efficient quantum algorithm for factoring integers, whereas factoring appears to be difficult for classical com
Consider the following distance query for an $n$-node graph $G$ undergoing edge insertions and deletions: given two sets of nodes $I$ and $J$, return the distances between every pair of nodes in $Itimes J$. This query is rather general and captures sever