ﻻ يوجد ملخص باللغة العربية
Water ice-rich patches have been detected on the surface of comet 67P/Churyumov-Gerasimenko by the VIRTIS hyperspectral imager on-board the Rosetta spacecraft, since the orbital insertion in late August 2014. Among those, three icy patches have been selected, and VIRTIS data are used to analyse their properties and their temporal evolution while the comet was moving towards the Sun. We performed an extensive analysis of the spectral parameters, and we applied the Hapke radiative transfer model to retrieve the abundance and grain size of water ice, as well as the mixing modalities of water ice and dark terrains on the three selected water ice rich areas. Study of the spatial distribution of the spectral parameters within the ice-rich patches has revealed that water ice follows different patterns associated to a bimodal distribution of the grains: ~50 {mu}m sized and ~2000 {mu}m sized. In all three cases, after the first detections at about 3.5 AU heliocentric distance, the spatial extension and intensity of the water ice spectral features increased, it reached a maximum after 60-100 days at about 3.0 AU, and was followed by an approximately equally timed decrease and disappearanceat about ~2.2 AU, before perihelion. The behaviour of the analysed patches can be assimilated to a seasonal cycle. In addition we found evidence of short-term variability associated to a diurnal water cycle. The similar lifecycle of the three icy regions indicates that water ice is uniformly distributed in the subsurface layers, and no large water ice reservoirs are present.
Since the orbital insertion of the Rosetta spacecraft, comet 67P/Churyumov-Gerasimenko (67P/C-G) has been mapped by OSIRIS camera and VIRTIS spectro-imager, producing a huge quantity of images and spectra of the comets nucleus. The aim of this work i
The Rosetta space probe accompanied comet 67P/Churyumov-Gerasimenko for more than two years, obtaining an unprecedented amount of unique data of the comet nucleus and inner coma. This work focuses identifying the source regions of faint jets and outb
We report on the first major temporal morphological changes observed on the surface of the nucleus of comet 67P/Churyumov-Gerasimenko, in the smooth terrains of the Imhotep region. We use images of the OSIRIS cameras onboard Rosetta to follow the tem
We analysed layering-related linear features on the surface of comet 67P/Churyumov-Gerasimenko (67P) to determine the internal configuration of the layerings within the nucleus. We used high-resolution images from the OSIRIS Narrow Angle Camera onboa
The Alice far-ultraviolet imaging spectrograph onboard Rosetta observed emissions from atomic and molecular species from within the coma of comet 67P/Churyumov-Gerasimenko during the entire escort phase of the mission from 2014 August to 2016 Septemb