ﻻ يوجد ملخص باللغة العربية
The interaction of ultrashort, high intensity laser pulses with thin foil targets leads to ion acceleration on the target rear surface. To make this ion source useful for applications, it is important to optimize the transfer of energy from the laser into the accelerated ions. One of the most promising ways to achieve this consists in engineering the target front by introducing periodic nanostructures. In this paper, the effect of these structures on ion acceleration is studied analytically and with multi-dimensional particle-in-cell simulations. We assessed the role of the structure shape, size, and the angle of laser incidence for obtaining the efficient energy transfer. Local control of electron trajectories is exploited to maximise the energy delivered into the target. Based on our numerical simulations, we propose a precise range of parameters for fabrication of nanostructured targets, which can increase the energy of the accelerated ions without requiring a higher laser intensity.
Ion acceleration in the MeV range can be routinely achieved with table-top laser technology. One of the current challenges is to improve the energy coupling from the laser to the proton beam without increasing the laser peak power. Introducing nanost
Efficient laser ion acceleration requires high laser intensities, which can only be obtained by tightly focusing laser radiation. In the radiation pressure acceleration regime, where the tightly focused laser driver leads to the appearance of the fun
Although the interaction of a flat-foil with currently available laser intensities is now considered a routine process, during the last decade emphasis is given to targets with complex geometries aiming on increasing the ion energy. This work present
The use of ultrathin solid foils offers optimal conditions for accelerating protons from laser-matter interactions. When the target is thin enough that relativistic self-induced transparency (RSIT) sets in, all of the target electrons get heated to h
The acceleration of ions from ultra-thin foils has been investigated using 250 TW, sub-ps laser pulses, focused on target at intensities up to $3times10^{20} Wcm2$. The ion spectra show the appearance of narrow band features for proton and Carbon pea