ترغب بنشر مسار تعليمي؟ اضغط هنا

High order ADER schemes for a unified first order hyperbolic formulation of Newtonian continuum mechanics coupled with electro-dynamics

65   0   0.0 ( 0 )
 نشر من قبل Ilya Peshkov M.
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we propose a new unified first order hyperbolic model of Newtonian continuum mechanics coupled with electro-dynamics. The model is able to describe the behavior of moving elasto-plastic dielectric solids as well as viscous and inviscid fluids in the presence of electro-magnetic fields. It is actually a very peculiar feature of the proposed PDE system that viscous fluids are treated just as a special case of elasto-plastic solids. This is achieved by introducing a strain relaxation mechanism in the evolution equations of the distortion matrix. The model also contains a hyperbolic formulation of heat conduction as well as a dissipative source term in the evolution equations for the electric field given by Ohms law. Via formal asymptotic analysis we show that in the stiff limit, the governing first order hyperbolic PDE system with relaxation source terms tends asymptotically to the well-known viscous and resistive magnetohydrodynamics (MHD) equations. The governing PDE system is symmetric hyperbolic and satisfies the first and second principle of thermodynamics, hence it belongs to the so-called class of symmetric hyperbolic thermodynamically compatible systems (HTC). An important feature of the proposed model is that the propagation speeds of all physical processes, including dissipative processes, are finite. The model is discretized using high order accurate ADER discontinuous Galerkin (DG) finite element schemes with a posteriori subcell finite volume limiter and using high order ADER-WENO finite volume schemes. We show numerical test problems that explore a rather large parameter space of the model ranging from ideal MHD, viscous and resistive MHD over pure electro-dynamics to moving dielectric elastic solids in a magnetic field.



قيم البحث

اقرأ أيضاً

This paper is concerned with the numerical solution of the unified first order hyperbolic formulation of continuum mechanics recently proposed by Peshkov & Romenski, denoted as HPR model. In that framework, the viscous stresses are computed from the so-called distortion tensor A, which is one of the primary state variables. A very important key feature of the model is its ability to describe at the same time the behavior of inviscid and viscous compressible Newtonian and non-Newtonian fluids with heat conduction, as well as the behavior of elastic and visco-plastic solids. This is achieved via a stiff source term that accounts for strain relaxation in the evolution equations of A. Also heat conduction is included via a first order hyperbolic evolution equation of the thermal impulse, from which the heat flux is computed. The governing PDE system is hyperbolic and fully consistent with the principles of thermodynamics. It is also fundamentally different from first order Maxwell-Cattaneo-type relaxation models based on extended irreversible thermodynamics. The connection between the HPR model and the classical hyperbolic-parabolic Navier-Stokes-Fourier theory is established via a formal asymptotic analysis in the stiff relaxation limit. From a numerical point of view, the governing partial differential equations are very challenging, since they form a large nonlinear hyperbolic PDE system that includes stiff source terms and non-conservative products. We apply the successful family of one-step ADER-WENO finite volume and ADER discontinuous Galerkin finite element schemes in the stiff relaxation limit, and compare the numerical results with exact or numerical reference solutions obtained for the Euler and Navier-Stokes equations. To show the universality of the model, the paper is rounded-off with an application to wave propagation in elastic solids.
We show in this paper that third- and fourth-order low storage Runge-Kutta algorithms can be built specifically for quadratic nonlinear operators, at the expense of roughly doubling the time needed for evaluating the temporal derivatives. The resulti ng algorithms are especially well suited for computational fluid dynamics. Examples are given for the Henon-Heiles Hamiltonian system and, in one and two space dimensions, for the Burgers equation using both a pseudo-spectral code and a spectral element code, respectively. The scheme is also shown to be practical in three space solving the incompressible Euler equation using a fully parallelized pseudo-spectral code.
290 - Chen Wu , Chang Shu , Baochang Shi 2017
An efficient third-order discrete unified gas kinetic scheme (DUGKS) with efficiency is presented in this work for simulating continuum and rarefied flows. By employing two-stage time-stepping scheme and the high-order DUGKS flux reconstruction strat egy, third-order of accuracy in both time and space can be achieved in the present method. It is also analytically proven that the second-order DUGKS is a special case of the present method. Compared with the high-order lattice Boltzmann equation {LBE} based methods, the present method is capable to deal with the rarefied flows by adopting the Newton-Cotes quadrature to approximate the integrals of moments. Instead of being constrained by the second-order (or lower-order) of accuracy in time splitting scheme as in the conventional high-order Runge-Kutta (RK) based kinetic methods, the present method solves the original BE, which overcomes the limitation in time accuracy. Typical benchmark tests are carried out for comprehensive evaluation of the present method. It is observed in the tests that the present method is advantageous over the original DUGKS in accuracy and capturing delicate flow structures. Moreover, the efficiency of the present third-order method is also shown in simulating rarefied flows.
We present a strongly hyperbolic first-order formulation of the Einstein equations based on the conformal and covariant Z4 system (CCZ4) with constraint-violation damping, which we refer to as FO-CCZ4. As CCZ4, this formulation combines the advantage s of a conformal and traceless formulation, with the suppression of constraint violations given by the damping terms, but being first order in time and space, it is particularly suited for a discontinuous Galerkin (DG) implementation. The strongly hyperbolic first-order formulation has been obtained by making careful use of first and second-order ordering constraints. A proof of strong hyperbolicity is given for a selected choice of standard gauges via an analytical computation of the entire eigenstructure of the FO-CCZ4 system. The resulting governing partial differential equations system is written in non-conservative form and requires the evolution of 58 unknowns. A key feature of our formulation is that the first-order CCZ4 system decouples into a set of pure ordinary differential equations and a reduced hyperbolic system of partial differential equations that contains only linearly degenerate fields. We implement FO-CCZ4 in a high-order path-conservative arbitrary-high-order-method-using-derivatives (ADER)-DG scheme with adaptive mesh refinement and local time-stepping, supplemented with a third-order ADER-WENO subcell finite-volume limiter in order to deal with singularities arising with black holes. We validate the correctness of the formulation through a series of standard tests in vacuum, performed in one, two and three spatial dimensions, and also present preliminary results on the evolution of binary black-hole systems. To the best of our knowledge, these are the first successful three-dimensional simulations of moving punctures carried out with high-order DG schemes using a first-order formulation of the Einstein equations.
Computational fluid dynamics is a direct modeling of physical laws in a discretized space. The basic physical laws include the mass, momentum and energy conservations, physically consistent transport process, and similar domain of dependence and infl uence between the physical reality and the numerical representation. Therefore, a physically soundable numerical scheme must be a compact one which involves the closest neighboring cells within the domain of dependence for the solution update under a CFL number $(sim 1 )$. In the construction of explicit high-order compact scheme, subcell flow distributions or the equivalent degree of freedoms beyond the cell averaged flow variables must be evolved and updated, such as the gradients of the flow variables inside each control volume. The direct modeling of flow evolution under generalized initial condition will be developed in this paper. The direct modeling will provide the updates of flow variables differently on both sides of a cell interface and limit high-order time derivatives of the flux function nonlinearly in case of discontinuity in time, such as a shock wave moving across a cell interface within a time step. The direct modeling unifies the nonlinear limiters in both space for the data reconstruction and time for the time-dependent flux transport. Under the direct modeling framework, as an example, the high-order compact gas-kinetic scheme (GKS) will be constructed. The scheme shows significant improvement in terms of robustness, accuracy, and efficiency in comparison with the previous high-order compact GKS.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا