Asymptotically sharp reverse Holder inequalities for flat Muckenhoupt weights


الملخص بالإنكليزية

We present reverse Holder inequalities for Muckenhoupt weights in $mathbb{R}^n$ with an asymptotically sharp behavior for flat weights, namely $A_infty$ weights with Fujii-Wilson constant $(w)_{A_infty}to 1^+$. That is, the local integrability exponent in the reverse Holder inequality blows up as the weight becomes nearly constant. This is expressed in a precise and explicit computation of the constants involved in the reverse Holder inequality. The proofs avoid BMO methods and rely instead on precise covering arguments. Furthermore, in the one-dimensional case we prove sharp reverse Holder inequalities for one-sided and two sided weights in the sense that both the integrability exponent as well as the multiplicative constant appearing in the estimate are best possible. We also prove sharp endpoint weak-type reverse Holder inequalities and consider further extensions to general non-doubling measures and multiparameter weights.

تحميل البحث