ترغب بنشر مسار تعليمي؟ اضغط هنا

Sub-Linear Privacy-Preserving Near-Neighbor Search

66   0   0.0 ( 0 )
 نشر من قبل M Sadegh Riazi
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In Near-Neighbor Search (NNS), a new client queries a database (held by a server) for the most similar data (near-neighbors) given a certain similarity metric. The Privacy-Preserving variant (PP-NNS) requires that neither server nor the client shall learn information about the other partys data except what can be inferred from the outcome of NNS. The overwhelming growth in the size of current datasets and the lack of a truly secure server in the online world render the existing solutions impractical; either due to their high computational requirements or non-realistic assumptions which potentially compromise privacy. PP-NNS having query time {it sub-linear} in the size of the database has been suggested as an open research direction by Li et al. (CCSW15). In this paper, we provide the first such algorithm, called Secure Locality Sensitive Indexing (SLSI) which has a sub-linear query time and the ability to handle honest-but-curious parties. At the heart of our proposal lies a secure binary embedding scheme generated from a novel probabilistic transformation over locality sensitive hashing family. We provide information theoretic bound for the privacy guarantees and support our theoretical claims using substantial empirical evidence on real-world datasets.



قيم البحث

اقرأ أيضاً

Releasing full data records is one of the most challenging problems in data privacy. On the one hand, many of the popular techniques such as data de-identification are problematic because of their dependence on the background knowledge of adversaries . On the other hand, rigorous methods such as the exponential mechanism for differential privacy are often computationally impractical to use for releasing high dimensional data or cannot preserve high utility of original data due to their extensive data perturbation. This paper presents a criterion called plausible deniability that provides a formal privacy guarantee, notably for releasing sensitive datasets: an output record can be released only if a certain amount of input records are indistinguishable, up to a privacy parameter. This notion does not depend on the background knowledge of an adversary. Also, it can efficiently be checked by privacy tests. We present mechanisms to generate synthetic datasets with similar statistical properties to the input data and the same format. We study this technique both theoretically and experimentally. A key theoretical result shows that, with proper randomization, the plausible deniability mechanism generates differentially private synthetic data. We demonstrate the efficiency of this generative technique on a large dataset; it is shown to preserve the utility of original data with respect to various statistical analysis and machine learning measures.
154 - Junfeng He 2012
Fast approximate nearest neighbor (NN) search in large databases is becoming popular. Several powerful learning-based formulations have been proposed recently. However, not much attention has been paid to a more fundamental question: how difficult is (approximate) nearest neighbor search in a given data set? And which data properties affect the difficulty of nearest neighbor search and how? This paper introduces the first concrete measure called Relative Contrast that can be used to evaluate the influence of several crucial data characteristics such as dimensionality, sparsity, and database size simultaneously in arbitrary normed metric spaces. Moreover, we present a theoretical analysis to prove how the difficulty measure (relative contrast) determines/affects the complexity of Local Sensitive Hashing, a popular approximate NN search method. Relative contrast also provides an explanation for a family of heuristic hashing algorithms with good practical performance based on PCA. Finally, we show that most of the previous works in measuring NN search meaningfulness/difficulty can be derived as special asymptotic cases for dense vectors of the proposed measure.
68 - Fabien Andre 2017
Efficient Nearest Neighbor (NN) search in high-dimensional spaces is a foundation of many multimedia retrieval systems. Because it offers low responses times, Product Quantization (PQ) is a popular solution. PQ compresses high-dimensional vectors int o short codes using several sub-quantizers, which enables in-RAM storage of large databases. This allows fast answers to NN queries, without accessing the SSD or HDD. The key feature of PQ is that it can compute distances between short codes and high-dimensional vectors using cache-resident lookup tables. The efficiency of this technique, named Asymmetric Distance Computation (ADC), remains limited because it performs many cache accesses. In this paper, we introduce Quick ADC, a novel technique that achieves a 3 to 6 times speedup over ADC by exploiting Single Instruction Multiple Data (SIMD) units available in current CPUs. Efficiently exploiting SIMD requires algorithmic changes to the ADC procedure. Namely, Quick ADC relies on two key modifications of ADC: (i) the use 4-bit sub-quantizers instead of the standard 8-bit sub-quantizers and (ii) the quantization of floating-point distances. This allows Quick ADC to exceed the performance of state-of-the-art systems, e.g., it achieves a Recall@100 of 0.94 in 3.4 ms on 1 billion SIFT descriptors (128-bit codes).
Extended differential privacy, a generalization of standard differential privacy (DP) using a general metric, has been widely studied to provide rigorous privacy guarantees while keeping high utility. However, existing works on extended DP are limite d to few metrics, such as the Euclidean metric. Consequently, they have only a small number of applications, such as location-based services and document processing. In this paper, we propose a couple of mechanisms providing extended DP with a different metric: angular distance (or cosine distance). Our mechanisms are based on locality sensitive hashing (LSH), which can be applied to the angular distance and work well for personal data in a high-dimensional space. We theoretically analyze the privacy properties of our mechanisms, and prove extended DP for input data by taking into account that LSH preserves the original metric only approximately. We apply our mechanisms to friend matching based on high-dimensional personal data with angular distance in the local model, and evaluate our mechanisms using two real datasets. We show that LDP requires a very large privacy budget and that RAPPOR does not work in this application. Then we show that our mechanisms enable friend matching with high utility and rigorous privacy guarantees based on extended DP.
In this paper, we study the privacy-preserving task assignment in spatial crowdsourcing, where the locations of both workers and tasks, prior to their release to the server, are perturbed with Geo-Indistinguishability (a differential privacy notion f or location-based systems). Different from the previously studied online setting, where each task is assigned immediately upon arrival, we target the batch-based setting, where the server maximizes the number of successfully assigned tasks after a batch of tasks arrive. To achieve this goal, we propose the k-Switch solution, which first divides the workers into small groups based on the perturbed distance between workers/tasks, and then utilizes Homomorphic Encryption (HE) based secure computation to enhance the task assignment. Furthermore, we expedite HE-based computation by limiting the size of the small groups under k. Extensive experiments demonstrate that, in terms of the number of successfully assigned tasks, the k-Switch solution improves batch-based baselines by 5.9X and the existing online solution by 1.74X, with no privacy leak.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا