ﻻ يوجد ملخص باللغة العربية
We study the spectrum of two kinds of operators involving a conical geometry: the Dirichlet Laplacian in conical layers and Schrodinger operators with attractive $delta$-interactions supported by infinite cones. Under the assumption that the cones have smooth cross-sections, we prove that such operators have infinitely many eigenvalues accumulating below the threshold of the essential spectrum and we express the accumulation rate in terms of the eigenvalues of an auxiliary one-dimensional operator with a curvature-induced potential.
We discuss several geometric conditions guaranteeing the finiteness or the infiniteness of the discrete spectrum for Robin Laplacians on conical domains.
Consider a quantum particle trapped between a curved layer of constant width built over a complete, non-compact, $mathcal C^2$ smooth surface embedded in $mathbb{R}^3$. We assume that the surface is asymptotically flat in the sense that the second fu
We consider the self-adjoint Landau Hamiltonian $H_0$ in $L^2(mathbb{R}^2)$ whose spectrum consists of infinitely degenerate eigenvalues $Lambda_q$, $q in mathbb{Z}_+$, and the perturbed operator $H_upsilon = H_0 + upsilondelta_Gamma$, where $Gamma s
We demonstrate how to approximate one-dimensional Schrodinger operators with $delta$-interaction by a Neumann Laplacian on a narrow waveguide-like domain. Namely, we consider a domain consisting of a straight strip and a small protuberance with room-
We consider the Schrodinger operator $H_{eta W} = -Delta + eta W$, self-adjoint in $L^2({mathbb R}^d)$, $d geq 1$. Here $eta$ is a non constant almost periodic function, while $W$ decays slowly and regularly at infinity. We study the asymptotic behav