ترغب بنشر مسار تعليمي؟ اضغط هنا

ArtTrack: Articulated Multi-person Tracking in the Wild

86   0   0.0 ( 0 )
 نشر من قبل Eldar Insafutdinov
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we propose an approach for articulated tracking of multiple people in unconstrained videos. Our starting point is a model that resembles existing architectures for single-frame pose estimation but is substantially faster. We achieve this in two ways: (1) by simplifying and sparsifying the body-part relationship graph and leveraging recent methods for faster inference, and (2) by offloading a substantial share of computation onto a feed-forward convolutional architecture that is able to detect and associate body joints of the same person even in clutter. We use this model to generate proposals for body joint locations and formulate articulated tracking as spatio-temporal grouping of such proposals. This allows to jointly solve the association problem for all people in the scene by propagating evidence from strong detections through time and enforcing constraints that each proposal can be assigned to one person only. We report results on a public MPII Human Pose benchmark and on a new MPII Video Pose dataset of image sequences with multiple people. We demonstrate that our model achieves state-of-the-art results while using only a fraction of time and is able to leverage temporal information to improve state-of-the-art for crowded scenes.



قيم البحث

اقرأ أيضاً

We present VoxelTrack for multi-person 3D pose estimation and tracking from a few cameras which are separated by wide baselines. It employs a multi-branch network to jointly estimate 3D poses and re-identification (Re-ID) features for all people in t he environment. In contrast to previous efforts which require to establish cross-view correspondence based on noisy 2D pose estimates, it directly estimates and tracks 3D poses from a 3D voxel-based representation constructed from multi-view images. We first discretize the 3D space by regular voxels and compute a feature vector for each voxel by averaging the body joint heatmaps that are inversely projected from all views. We estimate 3D poses from the voxel representation by predicting whether each voxel contains a particular body joint. Similarly, a Re-ID feature is computed for each voxel which is used to track the estimated 3D poses over time. The main advantage of the approach is that it avoids making any hard decisions based on individual images. The approach can robustly estimate and track 3D poses even when people are severely occluded in some cameras. It outperforms the state-of-the-art methods by a large margin on three public datasets including Shelf, Campus and CMU Panoptic.
We propose a method for multi-person detection and 2-D pose estimation that achieves state-of-art results on the challenging COCO keypoints task. It is a simple, yet powerful, top-down approach consisting of two stages. In the first stage, we predi ct the location and scale of boxes which are likely to contain people; for this we use the Faster RCNN detector. In the second stage, we estimate the keypoints of the person potentially contained in each proposed bounding box. For each keypoint type we predict dense heatmaps and offsets using a fully convolutional ResNet. To combine these outputs we introduce a novel aggregation procedure to obtain highly localized keypoint predictions. We also use a novel form of keypoint-based Non-Maximum-Suppression (NMS), instead of the cruder box-level NMS, and a novel form of keypoint-based confidence score estimation, instead of box-level scoring. Trained on COCO data alone, our final system achieves average precision of 0.649 on the COCO test-dev set and the 0.643 test-standard sets, outperforming the winner of the 2016 COCO keypoints challenge and other recent state-of-art. Further, by using additional in-house labeled data we obtain an even higher average precision of 0.685 on the test-dev set and 0.673 on the test-standard set, more than 5% absolute improvement compared to the previous best performing method on the same dataset.
In [1], we proposed a graph-based formulation that links and clusters person hypotheses over time by solving a minimum cost subgraph multicut problem. In this paper, we modify and extend [1] in three ways: 1) We introduce a novel local pairwise featu re based on local appearance matching that is robust to partial occlusion and camera motion. 2) We perform extensive experiments to compare different pairwise potentials and to analyze the robustness of the tracking formulation. 3) We consider a plain multicut problem and remove outlying clusters from its solution. This allows us to employ an efficient primal feasible optimization algorithm that is not applicable to the subgraph multicut problem of [1]. Unlike the branch-and-cut algorithm used there, this efficient algorithm used here is applicable to long videos and many detections. Together with the novel feature, it eliminates the need for the intermediate tracklet representation of [1]. We demonstrate the effectiveness of our overall approach on the MOT16 benchmark [2], achieving state-of-art performance.
In this work, we introduce the challenging problem of joint multi-person pose estimation and tracking of an unknown number of persons in unconstrained videos. Existing methods for multi-person pose estimation in images cannot be applied directly to t his problem, since it also requires to solve the problem of person association over time in addition to the pose estimation for each person. We therefore propose a novel method that jointly models multi-person pose estimation and tracking in a single formulation. To this end, we represent body joint detections in a video by a spatio-temporal graph and solve an integer linear program to partition the graph into sub-graphs that correspond to plausible body pose trajectories for each person. The proposed approach implicitly handles occlusion and truncation of persons. Since the problem has not been addressed quantitatively in the literature, we introduce a challenging Multi-Person PoseTrack dataset, and also propose a completely unconstrained evaluation protocol that does not make any assumptions about the scale, size, location or the number of persons. Finally, we evaluate the proposed approach and several baseline methods on our new dataset.
We introduce the OxUvA dataset and benchmark for evaluating single-object tracking algorithms. Benchmarks have enabled great strides in the field of object tracking by defining standardized evaluations on large sets of diverse videos. However, these works have focused exclusively on sequences that are just tens of seconds in length and in which the target is always visible. Consequently, most researchers have designed methods tailored to this short-term scenario, which is poorly representative of practitioners needs. Aiming to address this disparity, we compile a long-term, large-scale tracking dataset of sequences with average length greater than two minutes and with frequent target object disappearance. The OxUvA dataset is much larger than the object tracking datasets of recent years: it comprises 366 sequences spanning 14 hours of video. We assess the performance of several algorithms, considering both the ability to locate the target and to determine whether it is present or absent. Our goal is to offer the community a large and diverse benchmark to enable the design and evaluation of tracking methods ready to be used in the wild. The project website is http://oxuva.net
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا