ترغب بنشر مسار تعليمي؟ اضغط هنا

Approximate Support Recovery of Atomic Line Spectral Estimation: A Tale of Resolution and Precision

60   0   0.0 ( 0 )
 نشر من قبل Qiuwei Li
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This work investigates the parameter estimation performance of super-resolution line spectral estimation using atomic norm minimization. The focus is on analyzing the algorithms accuracy of inferring the frequencies and complex magnitudes from noisy observations. When the Signal-to-Noise Ratio is reasonably high and the true frequencies are separated by $O(frac{1}{n})$, the atomic norm estimator is shown to localize the correct number of frequencies, each within a neighborhood of size $O(sqrt{{log n}/{n^3}} sigma)$ of one of the true frequencies. Here $n$ is half the number of temporal samples and $sigma^2$ is the Gaussian noise variance. The analysis is based on a primal-dual witness construction procedure. The obtained error bound matches the Cramer-Rao lower bound up to a logarithmic factor. The relationship between resolution (separation of frequencies) and precision or accuracy of the estimator is highlighted. Our analysis also reveals that the atomic norm minimization can be viewed as a convex way to solve a $ell_1$-norm regularized, nonlinear and nonconvex least-squares problem to global optimality.



قيم البحث

اقرأ أيضاً

The generalized approximate message passing (GAMP) algorithm under the Bayesian setting shows advantage in recovering under-sampled sparse signals from corrupted observations. Compared to conventional convex optimization methods, it has a much lower complexity and is computationally tractable. In the GAMP framework, the sparse signal and the observation are viewed to be generated according to some pre-specified probability distributions in the input and output channels. However, the parameters of the distributions are usually unknown in practice. In this paper, we propose an extended GAMP algorithm with built-in parameter estimation (PE-GAMP) and present its empirical convergence analysis. PE-GAMP treats the parameters as unknown random variables with simple priors and jointly estimates them with the sparse signals. Compared with Expectation Maximization (EM) based parameter estimation methods, the proposed PE-GAMP could draw information from the prior distributions of the parameters to perform parameter estimation. It is also more robust and much simpler, which enables us to consider more complex signal distributions apart from the usual Bernoulli-Gaussian (BGm) mixture distribution. Specifically, the formulations of Bernoulli-Exponential mixture (BEm) distribution and Laplace distribution are given in this paper. Simulated noiseless sparse signal recovery experiments demonstrate that the performance of the proposed PE-GAMP matches the oracle GAMP algorithm. When noise is present, both the simulated experiments and the real image recovery experiments show that PE-GAMP is still able to maintain its robustness and outperform EM based parameter estimation method when the sampling ratio is small. Additionally, using the BEm formulation of the PE-GAMP, we can successfully perform non-negative sparse coding of local image patches and provide useful features for the image classification task.
The aim of two-dimensional line spectral estimation is to super-resolve the spectral point sources of the signal from time samples. In many associated applications such as radar and sonar, due to cut-off and saturation regions in electronic devices, some of the numbers of samples are corrupted by spiky noise. To overcome this problem, we present a new convex program to simultaneously estimate spectral point sources and spiky noise in two dimensions. To prove uniqueness of the solution, it is sufficient to show that a dual certificate exists. Construction of the dual certificate imposes a mild condition on the separation of the spectral point sources. Also, the number of spikes and detectable sparse sources are shown to be a logarithmic function of the number of time samples. Simulation results confirm the conclusions of our general theory.
265 - C. Herzet , C. Soussen , J. Idier 2013
We address the exact recovery of a k-sparse vector in the noiseless setting when some partial information on the support is available. This partial information takes the form of either a subset of the true support or an approximate subset including w rong atoms as well. We derive a new sufficient and worst-case necessary (in some sense) condition for the success of some procedures based on lp-relaxation, Orthogonal Matching Pursuit (OMP) and Orthogonal Least Squares (OLS). Our result is based on the coherence mu of the dictionary and relaxes the well-known condition mu<1/(2k-1) ensuring the recovery of any k-sparse vector in the non-informed setup. It reads mu<1/(2k-g+b-1) when the informed support is composed of g good atoms and b wrong atoms. We emphasize that our condition is complementary to some restricted-isometry based conditions by showing that none of them implies the other. Because this mutual coherence condition is common to all procedures, we carry out a finer analysis based on the Null Space Property (NSP) and the Exact Recovery Condition (ERC). Connections are established regarding the characterization of lp-relaxation procedures and OMP in the informed setup. First, we emphasize that the truncated NSP enjoys an ordering property when p is decreased. Second, the partial ERC for OMP (ERC-OMP) implies in turn the truncated NSP for the informed l1 problem, and the truncated NSP for p<1.
The problem of estimating a sparse signal from low dimensional noisy observations arises in many applications, including super resolution, signal deconvolution, and radar imaging. In this paper, we consider a sparse signal model with non-stationary m odulations, in which each dictionary atom contributing to the observations undergoes an unknown, distinct modulation. By applying the lifting technique, under the assumption that the modulating signals live in a common subspace, we recast this sparse recovery and non-stationary blind demodulation problem as the recovery of a column-wise sparse matrix from structured linear observations, and propose to solve it via block $ell_{1}$-norm regularized quadratic minimization. Due to observation noise, the sparse signal and modulation process cannot be recovered exactly. Instead, we aim to recover the sparse support of the ground truth signal and bound the recovery errors of the signals non-zero components and the modulation process. In particular, we derive sufficient conditions on the sample complexity and regularization parameter for exact support recovery and bound the recovery error on the support. Numerical simulations verify and support our theoretical findings, and we demonstrate the effectiveness of our model in the application of single molecule imaging.
Reconfigurable intelligent surfaces (RISs) have been recently considered as a promising candidate for energy-efficient solutions in future wireless networks. Their dynamic and low-power configuration enables coverage extension, massive connectivity, and low-latency communications. Due to a large number of unknown variables referring to the RIS unit elements and the transmitted signals, channel estimation and signal recovery in RIS-based systems are the ones of the most critical technical challenges. To address this problem, we focus on the RIS-assisted wireless communication system and present two joint channel estimation and signal recovery schemes based on message passing algorithms in this paper. Specifically, the proposed bidirectional scheme applies the Taylor series expansion and Gaussian approximation to simplify the sum-product procedure in the formulated problem. In addition, the inner iteration that adopts two variants of approximate message passing algorithms is incorporated to ensure robustness and convergence. Two ambiguities removal methods are also discussed in this paper. Our simulation results show that the proposed schemes show the superiority over the state-of-art benchmark method. We also provide insights on the impact of different RIS parameter settings on the proposed schemes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا