By exploiting the similarity between Blochs theorem for electrons in crystalline solids and the problem of Landau gauge-fixing in Yang-Mills theory on a replicated lattice, one is able to obtain essentially infinite-volume results from numerical simulations performed on a relatively small lattice. This approach, proposed by D. Zwanziger in cite{Zwanziger:1993dh}, corresponds to taking the infinite-volume limit for Landau-gauge field configurations in two steps: firstly for the gauge transformation alone, while keeping the lattice volume finite, and secondly for the gauge-field configuration itself. The solutions to the gauge-fixing condition are then given in terms of Bloch waves. Applying the method to data from Monte Carlo simulations of pure SU(2) gauge theory in two and three space-time dimensions, we are able to evaluate the Landau-gauge gluon propagator for lattices of linear extent up to sixteen times larger than that of the simulated lattice. The approach is reminiscent of Fisher and Ruelles construction of the thermodynamic limit in classical statistical mechanics.