ﻻ يوجد ملخص باللغة العربية
We construct a Schwartz function $varphi$ such that for every exponentially small perturbation of integers $Lambda$, the set of translates ${varphi(t-lambda), lambdainLambda}$ spans the space $L^p(R)$, for every $p > 1$. This result remains true for more general function spaces $X$, whose norm is weaker than $L^1$ (on bounded functions).
This paper is devoted to the study of the relatively compact sets in Quasi-Banach function spaces, providing an important improvement of the known results. As an application, we take the final step in establishing a relative compactness criteria for
We prove sparse bounds for the spherical maximal operator of Magyar, Stein and Wainger. The bounds are conjecturally sharp, and contain an endpoint estimate. The new method of proof is inspired by ones by Bourgain and Ionescu, is very efficient, and
We study weighted Besov and Triebel--Lizorkin spaces associated with Hermite expansions and obtain (i) frame decompositions, and (ii) characterizations of continuous Sobolev-type embeddings. The weights we consider generalize the Muckhenhoupt weights.
For a given finitely generated shift invariant (FSI) subspace $cWsubset L^2(R^k)$ we obtain a simple criterion for the existence of shift generated (SG) Bessel sequences $E(cF)$ induced by finite sequences of vectors $cFin cW^n$ that have a prescribe
Let $p(cdot): mathbb R^nto(0,1]$ be a variable exponent function satisfying the globally $log$-Holder continuous condition and $L$ a non-negative self-adjoint operator on $L^2(mathbb R^n)$ whose heat kernels satisfying the Gaussian upper bound estima