ترغب بنشر مسار تعليمي؟ اضغط هنا

Charged pions tagged with polarized photons probing strong CP violation in a chiral-imbalance medium

325   0   0.0 ( 0 )
 نشر من قبل Mamiya Kawaguchi
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

It is expected that in a hot QCD system, a local parity-odd domain can be produced due to nonzero chirality, which is induced from the difference of winding numbers carried by the gluon topological configuration (QCD sphaleron). This local domain is called the chiral-imbalance medium characterized by nonzero chiral chemical potential, which can be interpreted as the time variation of the strong CP phase. We find that the chiral chemical potential generates the parity breaking term in the electromagnetic form factor of charged pions. Heavy ion collision experiments could observe the phenomenological consequence of this parity-odd form factor through the elastic scattering of a pion and a photon in the medium. Then we quantify the asymmetry rate of the parity violation by measuring the polarization of the photon associated with the pion, and discuss how it could be measured in a definite lab frame. We roughly estimate the typical size of the asymmetry, just by picking up the pion resonant process, and find that the signal can be sufficiently larger than possible background events from parity-breaking electroweak process. Our findings might provide a novel possibility to make a manifest detection for the remnant of the strong CP violation.



قيم البحث

اقرأ أيضاً

The charge form factor and weak decay constant of the pion as well as the pion-quark coupling constant in symmetric nuclear matter are explored in the framework of the Nambu--Jona-Lasinio model, where the pion is described as a bound state of dressed quark-antiquark pair obtained by the Bethe-Salpeter equation. For the in-medium current quark properties, we adopt the quark-meson coupling model, which describes successfully many hadron properties in a nuclear medium. The pion decay constant and the pion-quark coupling constant are found to decrease with increasing density as well as the magnitude of the light quark condensate. But the pion mass is found to be insensitive to density up to $1.25$ times the normal nuclear density. The pion charge form factor in the space-like region is also explored and is found to have a similar $Q^2$ dependence as the form factor in vacuum showing $1/Q^2$-behavior in large $Q^2$ region, where $Q^2$ is the negative of the four-momentum transfer squared. The modifications of the charge radius of the charged pion in nuclear matter are then estimated and the root-mean-square radius at the normal nuclear density is predicted to be larger than that in vacuum by about 20%.
Bremsstrahlung of photons emitted during the scattering of $pi^{+}$-mesons off nuclei is studied for the first time. Role of interactions between $pi^{+}$-mesons and nuclei in the formation of the bremsstrahlung emission is analyzed in details. We di scover essential contribution of emitted photons from nuclear part of Johnson-Satchler potential to the full spectrum, in contrast to the optical Woods-Saxon potential. We observe unusual essential influence of the nuclear part of both potentials on the spectrum at high photon energies. This phenomenon opens a new experimental way to study and check non-Coulomb and nuclear interactions between pions and nuclei via measurements of the emitted photons. We provide predictions of the bremsstrahlung spectra for pion scattering off $^{44}{rm Ca}$.
304 - Shuai Y.F. Liu , Min He , 2018
The determination of the color force in a quark-gluon plasma (QGP) is a key objective in the investigation of strong-interaction matter. Open and hidden heavy-flavor observables in heavy-ion collisions (HICs) are believed to provide insights into thi s problem by comparing calculations of heavy-quark (HQ) and quarkonium transport with pertinent experimental data. In this work, we utilize the $T$-matrix formalism to compute charm-quark transport coefficients for various input potentials previously extracted from simultaneous fits to lattice-QCD data for HQ free energies, quarkonium correlators and the QGP equation of state. We investigate the impact of off-shell effects (spectral functions) in the QGP medium on the HQ transport, and compare to earlier results using the free or internal HQ energies as potential proxies. We then employ the transport coefficients in relativistic Langevin simulations for HICs to test the sensitivity of heavy-flavor observables to the HQ interactions in the QGP. We find that a strongly-coupled $T$-matrix solution generates a HQ elliptic flow comparable to the results from the internal energy at low momentum, driven by a long-range remnant of the confining force, while falling off stronger with increasing 3-momentum. The weakly coupled $T$-matrix solution, whose underlying potential is close to the free energy, leads to an elliptic flow well below the experimentally observed range.
We shed light upon the eta mass in nuclear matter in the context of partial restoration of chiral symmetry, pointing out that the U_{A}(1) anomaly effects causes the eta-eta mass difference necessarily through the chiral symmetry breaking. As a conse quence, it is expected that the eta mass is reduced by order of 100 MeV in nuclear matter where partial restoration of chiral symmetry takes place. The discussion given here is based on Ref. [1].
We propose a new chirality-imbalance phenomenon arising in baryonic/high dense matters under a magnetic field. A locally chiral-imbalanced (parity-odd) domain can be created due to the electromagnetically induced $U(1)_A$ anomaly in high-dense matter s. The proposed local-chiral imbalance generically possesses a close relationship to a spacial distribution of an inhomogeneous chiral (pion)-vector current coupled to the magnetic field. To demonstrate such a nontrivial correlation, we take the skyrmion crystal approach to model baryonic/high dense matters. Remarkably enough, we find the chirality-imbalance distribution takes a wave form in a high density region (dobbed ``chiral-imbalance density wave), when the inhomogeneous chiral condensate develops to form a chiral density wave. This implies the emergence of a nontrivial density wave for the explicitly broken $U(1)_A$ current simultaneously with the chiral density wave for the spontaneously broken chiral-flavor current. We further find that the topological phase transition in the skyrmion crystal model (between skyrmion and half-skyrmion phases) undergoes the deformation of the chiral-imbalance density wave in shape and periodicity. The emergence of this chiral-imbalance density wave could give a crucial contribution to studies on the chiral phase transition, as well as the nuclear matter structure, in compact stars under a magnetic field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا