ﻻ يوجد ملخص باللغة العربية
The Kelvin-Helmholtz instability is well-known in classical hydrodynamics, where it explains the sudden emergence of interfacial surface waves as a function of the velocity of flow parallel to the interface. It can be carried over to the inviscid two-fluid dynamics of superfluids, to study different types of interfaces and phase boundaries in quantum fluids. We report measurements on the stability of the phase boundary separating the two bulk phases of superfluid 3He in rotating flow, while the boundary is localized with the gradient of the magnetic field to a position perpendicular to the rotation axis. The results demonstrate that the classic stability condition, when modified for the superfluid environment, is obeyed down to 0.4 Tc, if a large fraction of the magnetic polarization of the B-phase is attributed to a parabolic reduction of the interfacial surface tension with increasing magnetic field.
The discovery of superfluidity in 3He in 1971, published in 1972, [1, 2] has influenced a wide range of investigations that extend well beyond fermionic superfluids, including electronic quantum ma- terials, ultra-cold gases and degenerate neutron ma
Superfluid 3He is an unconventional neutral superfluid in a p-wave state with three different superfluid phases each identified by a unique set of characteristic broken symmetries and non- trivial topology. Despite natural immunity of 3He from defect
In a rotating two-phase sample of 3He-B and magnetic-field stabilized 3He-A the large difference in mutual friction dissipation at 0.20 Tc gives rise to unusual vortex flow responses. We use noninvasive NMR techniques to monitor spin down and spin up
We study theoretically nonlinear dynamics induced by shear-flow instability in segregated two-component Bose-Einstein condensates in terms of the Weber number, defined by extending the past theory on the Kelvin-Helmholtz instability in classical flui
The Kelvin-Helmholtz (KH) instability is studied in a non-Newtonian dusty plasma with an experimentally verified model [Phys. Rev. Lett. {bf 98}, 145003 (2007)] of shear flow rate dependent viscosity. The shear flow profile used here is a parabolic t