Gaia16apd -- a link between fast-and slowly-declining type I superluminous supernovae


الملخص بالإنكليزية

We present ultraviolet, optical and infrared photometry and optical spectroscopy of the type Ic superluminous supernova (SLSN) Gaia16apd (= SN 2016eay), covering its evolution from 26 d before the $g$-band peak to 234.1 d after the peak. Gaia16apd was followed as a part of the NOT Unbiased Transient Survey (NUTS). It is one of the closest SLSNe known ($z = 0.102pm0.001$), with detailed optical and ultraviolet (UV) observations covering the peak. Gaia16apd is a spectroscopically typical type Ic SLSN, exhibiting the characteristic blue early spectra with O II absorption, and reaches a peak $M_{g} = -21.8 pm 0.1$ mag. However, photometrically it exhibits an evolution intermediate between the fast- and slowly-declining type Ic SLSNe, with an early evolution closer to the fast-declining events. Together with LSQ12dlf, another SLSN with similar properties, it demonstrates a possible continuum between fast- and slowly-declining events. It is unusually UV-bright even for a SLSN, reaching a non-$K$-corrected $M_{uvm2} simeq -23.3$ mag, the only other type Ic SLSN with similar UV brightness being SN 2010gx. Assuming that Gaia16apd was powered by magnetar spin-down, we derive a period of $P = 1.9pm0.2$ ms and a magnetic field of $B = 1.9pm0.2 times 10^{14}$ G for the magnetar. The estimated ejecta mass is between 8 and 16 $mathrm{M}_{odot}$ and the kinetic energy between 1.3 and $2.5 times 10^{52}$ erg, depending on opacity and assuming that the entire ejecta is swept up into a thin shell. Despite the early photometric differences, the spectra at late times are similar to slowly-declining type Ic SLSNe, implying that the two subclasses originate from similar progenitors.

تحميل البحث