ترغب بنشر مسار تعليمي؟ اضغط هنا

Operator Splitting Method for Simulation of Dynamic Flows in Natural Gas Pipeline Networks

97   0   0.0 ( 0 )
 نشر من قبل Alexander O. Korotkevich
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We develop an operator splitting method to simulate flows of isothermal compressible natural gas over transmission pipelines. The method solves a system of nonlinear hyperbolic partial differential equations (PDEs) of hydrodynamic type for mass flow and pressure on a metric graph, where turbulent losses of momentum are modeled by phenomenological Darcy-Weisbach friction. Mass flow balance is maintained through the boundary conditions at the network nodes, where natural gas is injected or withdrawn from the system. Gas flow through the network is controlled by compressors boosting pressure at the inlet of the adjoint pipe. Our operator splitting numerical scheme is unconditionally stable and it is second order accurate in space and time. The scheme is explicit, and it is formulated to work with general networks with loops. We test the scheme over range of regimes and network configurations, also comparing its performance with performance of two other state of the art implicit schemes.



قيم البحث

اقرأ أيضاً

159 - Lianhua Zhu , Xingcai Pi , Wei Su 2020
The general synthetic iteration scheme (GSIS) is extended to find the steady-state solution of nonlinear gas kinetic equation, removing the long-standing problems of slow convergence and requirement of ultra-fine grids in near-continuum flows. The ke y ingredients of GSIS are that the gas kinetic equation and macroscopic synthetic equations are tightly coupled, and the constitutive relations in macroscopic synthetic equations explicitly contain Newtons law of shear stress and Fouriers law of heat conduction. The higher-order constitutive relations describing rarefaction effects are calculated from the velocity distribution function, however, their constructions are simpler than our previous work (Su et al. Journal of Computational Physics 407 (2020) 109245) for linearized gas kinetic equations. On the other hand, solutions of macroscopic synthetic equations are used to inform the evolution of gas kinetic equation at the next iteration step. A rigorous linear Fourier stability analysis in periodic system shows that the error decay rate of GSIS can be smaller than 0.5, which means that the deviation to steady-state solution can be reduced by 3 orders of magnitude in 10 iterations. Other important advantages of the GSIS are (i) it does not rely on the specific form of Boltzmann collision operator and (ii) it can be solved by sophisticated techniques in computational fluid dynamics, making it amenable to large scale engineering applications. In this paper, the efficiency and accuracy of GSIS is demonstrated by a number of canonical test cases in rarefied gas dynamics.
We propose a multi-resolution strategy that is compatible with the lattice Greens function (LGF) technique for solving viscous, incompressible flows on unbounded domains. The LGF method exploits the regularity of a finite-volume scheme on a formally unbounded Cartesian mesh to yield robust and computationally efficient solutions. The original method is spatially adaptive, but challenging to integrate with embedded mesh refinement as the underlying LGF is only defined for a fixed resolution. We present an ansatz for adaptive mesh refinement, where the solutions to the pressure Poisson equation are approximated using the LGF technique on a composite mesh constructed from a series of infinite lattices of differing resolution. To solve the incompressible Navier-Stokes equations, this is further combined with an integrating factor for the viscous terms and an appropriate Runge-Kutta scheme for the resulting differential-algebraic equations. The parallelized algorithm is verified through with numerical simulations of vortex rings, and the collision of vortex rings at high Reynolds number is simulated to demonstrate the reduction in computational cells achievable with both spatial and refinement adaptivity.
149 - Q. Li , K. H. Luo , Y. L. He 2011
In this paper, a coupling lattice Boltzmann (LB) model for simulating thermal flows on the standard D2Q9 lattice is developed in the framework of the double-distribution-function (DDF) approach in which the viscous heat dissipation and compression wo rk are considered. In the model, a density distribution function is used to simulate the flow field, while a total energy distribution function is employed to simulate the temperature field. The discrete equilibrium density and total energy distribution functions are obtained from the Hermite expansions of the corresponding continuous equilibrium distribution functions. The pressure given by the equation of state of perfect gases is recovered in the macroscopic momentum and energy equations. The coupling between the momentum and energy transports makes the model applicable for general thermal flows such as non-Boussinesq flows, while the existing DDF LB models on standard lattices are usually limited to Boussinesq flows in which the temperature variation is small. Meanwhile, the simple structure and basic advantages of the DDF LB approach are retained. The model is tested by numerical simulations of thermal Couette flow, attenuation-driven acoustic streaming, and natural convection in a square cavity with small and large temperature differences. The numerical results are found to be in good agreement with the analytical solutions and/or other numerical results reported in the literature.
A high-performance gas kinetic solver using multi-level parallelization is developed to enable pore-scale simulations of rarefied flows in porous media. The Boltzmann model equation is solved by the discrete velocity method with an iterative scheme. The multi-level MPI/OpenMP parallelization is implemented with the aim to efficiently utilise the computational resources to allow direct simulation of rarefied gas flows in porous media based on digital rock images for the first time. The multi-level parallel approach is analyzed in details confirming its better performance than the commonly-used MPI processing alone for an iterative scheme. With high communication efficiency and appropriate load balancing among CPU processes, parallel efficiency of 94% is achieved for 1536 cores in the 2D simulations, and 81% for 12288 cores in the 3D simulations. While decomposition in the spatial space does not affect the simulation results, one additional benefit of this approach is that the number of subdomains can be kept minimal to avoid deterioration of the convergence rate of the iteration process. This multi-level parallel approach can be readily extended to solve other Boltzmann model equations.
This paper addresses how two time integration schemes, the Heuns scheme for explicit time integration and the second-order Crank-Nicolson scheme for implicit time integration, can be coupled spatially. This coupling is the prerequisite to perform a c oupled Large Eddy Simulation / Reynolds Averaged Navier-Stokes computation in an industrial context, using the implicit time procedure for the boundary layer (RANS) and the explicit time integration procedure in the LES region. The coupling procedure is designed in order to switch from explicit to implicit time integrations as fast as possible, while maintaining stability. After introducing the different schemes, the paper presents the initial coupling procedure adapted from a published reference and shows that it can amplify some numerical waves. An alternative procedure, studied in a coupled time/space framework, is shown to be stable and with spectral properties in agreement with the requirements of industrial applications. The coupling technique is validated with standard test cases, ranging from one-dimensional to three-dimensional flows.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا