ﻻ يوجد ملخص باللغة العربية
In this review presented at the Royal Society meeting, Cometary Science After Rosetta, I present an overview of studies of small solar system objects that exhibit properties of both asteroids and comets (with a focus on so-called active asteroids). Sometimes referred to as transition objects, these bodies are perhaps more appropriately described as continuum objects, to reflect the notion that rather than necessarily representing actual transitional evolutionary states between asteroids and comets, they simply belong to the general population of small solar system bodies that happen to exhibit a continuous range of observational, physical, and dynamical properties. Continuum objects are intriguing because they possess many of the properties that make classical comets interesting to study (e.g., relatively primitive compositions, ejection of surface and subsurface material into space where it can be more easily studied, and orbital properties that allow us to sample material from distant parts of the solar system that would otherwise be inaccessible), while allowing us to study regions of the solar system that are not sampled by classical comets.
During the last few years our knowledge about the X-ray emission from bodies within the solar system has significantly improved. Several new solar system objects are now known to shine in X-rays at energies below 2 keV. Apart from the Sun, the known
We present a method to identify distant solar system objects in long-term wide-field asteroid survey data, and conduct a search for them in the Pan-STARRS1 (PS1) image data acquired from 2010 to mid-2015. We demonstrate that our method is able to fin
Numerous nearby FGK dwarfs possess discs of debris generated by collisions among comets. Here we fit the levels of dusty excess observed by Spitzer at 70$umu$m and show that they form a rather smooth distribution. Taking into account the transition o
Motivated by recent visits from interstellar comets, along with continuing discoveries of minor bodies in orbit of the Sun, this paper studies the capture of objects on initially hyperbolic orbits by our solar system. Using an ensemble of $sim500$ mi
We present the results of snapshot numerical integrations of test particles representing comet-like and asteroid-like objects in the inner solar system aimed at investigating the short-term dynamical evolution of objects close to the dynamical bounda