ﻻ يوجد ملخص باللغة العربية
Consider a population consisting of n individuals, each of whom has one of d types (e.g. their blood type, in which case d=4). We are allowed to query this database by specifying a subset of the population, and in response we observe a noiseless histogram (a d-dimensional vector of counts) of types of the pooled individuals. This measurement model arises in practical situations such as pooling of genetic data and may also be motivated by privacy considerations. We are interested in the number of queries one needs to unambiguously determine the type of each individual. In this paper, we study this information-theoretic question under the random, dense setting where in each query, a random subset of individuals of size proportional to n is chosen. This makes the problem a particular example of a random constraint satisfaction problem (CSP) with a planted solution. We establish almost matching upper and lower bounds on the minimum number of queries m such that there is no solution other than the planted one with probability tending to 1 as n tends to infinity. Our proof relies on the computation of the exact annealed free energy of this model in the thermodynamic limit, which corresponds to the exponential rate of decay of the expected number of solution to this planted CSP. As a by-product of the analysis, we show an identity of independent interest relating the Gaussian integral over the space of Eulerian flows of a graph to its spanning tree polynomial.
We consider the problem of decoding a discrete signal of categorical variables from the observation of several histograms of pooled subsets of it. We present an Approximate Message Passing (AMP) algorithm for recovering the signal in the random dense
We study the performance of classical and quantum machine learning (ML) models in predicting outcomes of physical experiments. The experiments depend on an input parameter $x$ and involve execution of a (possibly unknown) quantum process $mathcal{E}$
Pimentel et al. (2020) recently analysed probing from an information-theoretic perspective. They argue that probing should be seen as approximating a mutual information. This led to the rather unintuitive conclusion that representations encode exactl
Safely deploying machine learning models to the real world is often a challenging process. Models trained with data obtained from a specific geographic location tend to fail when queried with data obtained elsewhere, agents trained in a simulation ca
In the group testing problem we aim to identify a small number of infected individuals within a large population. We avail ourselves to a procedure that can test a group of multiple individuals, with the test result coming out positive iff at least o