ﻻ يوجد ملخص باللغة العربية
The global attraction is proved for the nonlinear 3D Klein-Gordon equation with a nonlinearity concentrated at one point. Our main result is the convergence of each finite energy solution to the manifold of all solitary waves as $ttopminfty$. This global attraction is caused by the nonlinear energy transfer from lower harmonics to the continuous spectrum and subsequent dispersion radiation. We justify this mechanism by the following strategy based on inflation of spectrum by the nonlinearity. We show that any omega-limit trajectory has the time-spectrum in the spectral gap $[-m,m]$ and satisfies the original equation. Then the application of the Titchmarsh Convolution Theorem reduces the spectrum of each omega-limit trajectory to a single frequency $omegain[-m,m]$.
We prove global well-posedness for the 3D Klein-Gordon equation with a concentrated nonlinearity.
We consider the nonlinear Klein-Gordon equation in $R^d$. We call multi-solitary waves a solution behaving at large time as a sum of boosted standing waves. Our main result is the existence of such multi-solitary waves, provided the composing boosted
We prove global well-posedness for 3D Dirac equation with a concentrated nonlinearity.
We consider a system of two coupled non-linear Klein-Gordon equations. We show the existence of standing waves solutions and the existence of a Lyapunov function for the ground state.
In this paper, we characterize a family of solitary waves for NLS with derivative (DNLS) by the structue analysis and the variational argument. Since (DNLS) doesnt enjoy the Galilean invariance any more, the structure analysis here is closely related