ﻻ يوجد ملخص باللغة العربية
Topological nodal line semimetals, a novel quantum state of materials, possess topologically nontrivial valence and conduction bands that touch at a line near the Fermi level. The exotic band structure can lead to various novel properties, such as long-range Coulomb interaction and flat Landau levels. Recently, topological nodal lines have been observed in several bulk materials, such as PtSn4, ZrSiS, TlTaSe2 and PbTaSe2. However, in two-dimensional materials, experimental research on nodal line fermions is still lacking. Here, we report the discovery of two-dimensional Dirac nodal line fermions in monolayer Cu2Si based on combined theoretical calculations and angle-resolved photoemission spectroscopy measurements. The Dirac nodal lines in Cu2Si form two concentric loops centred around the {Gamma} point and are protected by mirror reflection symmetry. Our results establish Cu2Si as a new platform to study the novel physical properties in two-dimensional Dirac materials and provide new opportunities to realize high-speed low-dissipation devices.
Dirac point in two-dimensional (2D) materials has been a fascinating subject of research. Recently, it has been theoretically predicted that Dirac point may also be stabilized in 2D magnetic systems. However, it remains a challenge to identify concre
Dirac nodal line semimetals (DNLSs) host relativistic quasiparticles in their one-dimensional (1D) Dirac nodal line (DNL) bands that are protected by certain crystalline symmetries. Their novel low-energy fermion quasiparticle excitations and transpo
Nodal line semimetals in two-dimensional (2-D) materials have attracted intense attention currently. From fundamental physics and spintronic applications points of view, high Curie temperature ferromagnetic (FM) ones with nodal lines robust against s
We predict from DFT based electronic structure calculations that a monolayer made up of Carbon and Arsenic atoms, with a chemical composition (CAs3) forms an energetically and dynamically stable system. The optimized geometry of the monolayer is slig
Based on first-principles calculations, we predict a new two-dimensional ferromagnetic material that exhibits exotic Fermi surface topology. We show that monolayer hexagonal indium carbide ({em h}-InC) is thermodynamically and dynamically stable, and